
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
ENGINEERING OF FAST AND ROBUST ADAPTIVE

CONTROL FOR FIXED-WING UNMANNED AIRCRAFT

by

Ryan G. Beall

June 2017

Advisor: Oleg A. Yakimenko
Co-Advisor: Vladimir N. Dobrokhodov
Second Reader: Fotis A. Papoulias

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
June 2017

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

ENGINEERINGOF FAST AND ROBUST ADAPTIVE CONTROL FOR FIXED-WING
UNMANNED AIRCRAFT

5. FUNDING NUMBERS

6. AUTHOR(S)

Ryan G. Beall

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

As the demand for Unmanned Aerial System (UAS) technology increases, the current guidance, navigation, and control (GNC)
algorithms will scale poorly to meet the demand because currently, significant resources are required to certify flight controllers
on an individual platform basis. As different airframes are introduced to meet the expanding mission requirements, the resources
required to sustain the GNC certification demand will become a limiting factor in scalability. The feasibility of replacing conventional
GNC techniques with modern adaptive control theory was conducted on a commercial-off-the-shelf (COTS) open-source autopilot.
This enabled rapid prototyping and integration of an adaptive controller. The adaptive controller architecture was designed to be
aircraft non-specific. This ensures the controller easily integrates into any aircraft, therefore minimizing the resource burden of tuning
and certification. The adaptive controller tested in this research improved performance over the baseline controller and was rapidly
integrated on multiple various airframes with minimal resources. Improved performance over classical feedback was achieved with
fast and robust adaptation in multiple regimes of flight.

14. SUBJECT TERMS

L1 Adaptive Control, Fixed-wing Modern Control, Fast and Robust Adaptive Control
15. NUMBER OF

PAGES 121
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

ENGINEERING OF FAST AND ROBUST ADAPTIVE CONTROL FOR
FIXED-WING UNMANNED AIRCRAFT

Ryan G. Beall
Lieutenant, United States Navy

B.S., United States Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2017

Approved by: Oleg A. Yakimenko
Advisor

Vladimir N. Dobrokhodov
Co-Advisor

Fotis A. Papoulias
Second Reader

Ronald E. Giachetti
Chair, Department of Systems Engineering

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

As the demand for Unmanned Aerial System (UAS) technology increases, the current
guidance, navigation, and control (GNC) algorithms will scale poorly to meet the demand
because currently, significant resources are required to certify flight controllers on an
individual platform basis. As different airframes are introduced to meet the expanding
mission requirements, the resources required to sustain the GNC certification demand will
become a limiting factor in scalability. The feasibility of replacing conventional GNC
techniques with modern adaptive control theory was conducted on a commercial-off-the-
shelf (COTS) open-source autopilot. This enabled rapid prototyping and integration of an
adaptive controller. The adaptive controller architecture was designed to be aircraft non-
specific. This ensures the controller easily integrates into any aircraft, therefore minimizing
the resource burden of tuning and certification. The adaptive controller tested in this
research improved performance over the baseline controller and was rapidly integrated on
multiple various airframes with minimal resources. Improved performance over classical
feedback was achieved with fast and robust adaptation in multiple regimes of flight.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 DOD / NAVY Autonomous Roadmap 1
1.2 Challenges in Designing Versatile Controllers 2
1.3 Problem Formulation and Thesis Organization. 3

2 Overview of Modern Control Techniques 5
2.1 Adaptive Control History . 5
2.2 Classical Feedback vs Adaptive Control 6
2.3 Model Reference Adaptive Control 8

3 Engineering of Adaptive Control 11
3.1 L1 Adaptive Control . 11
3.2 L1 Parameter Estimation . 17
3.3 L1 Filter - C(s) . 18
3.4 L1 Discrete Time Implementation 19

4 Design of Experimental Platform 29
4.1 Pixhawk Autopilot . 29
4.2 Ground Control Station . 32
4.3 Simulation . 32
4.4 Airframe . 33

5 Flight Testing and Performance Evaluation 39
5.1 Simulation Results . 39
5.2 Flight Test Results . 44

6 Recommendation 53
6.1 L1 Adaptive Control Algorithm Tuning 53

vii

6.2 Improved Recursive Architecture 55
6.3 Integrator Windup Issue . 56

7 Conclusion 57

Appendix A Transfer Functions 59
A.1 Transfer Functions . 59

Appendix B Fixed Wing Aircraft Dynamics Model 61
B.1 Fixed Wing Aircraft Dynamics Model 61

Appendix C System Identification 67
C.1 System Identification . 67

Appendix D Lyapunov Stability Definition 75
D.1 Lyapunov Stability Theory . 75

Appendix E Projection Operator 79
E.1 Derivation of Projection Operator Proj (θ, y) 79
E.2 C++ Implementation . 81

Appendix F Matlab Code 83
F.1 Euler vs Trapezoidal Method. 83
F.2 SISO Lyapunov Solution Proof 83
F.3 Reverse Linear Chirp . 84
F.4 Projection Operator Example Plots 84
F.5 System Identification . 85

Appendix G L1 Adaptive Controller Source Code 89
G.1 L1 Adaptive Control Source Code 89

List of References 97

viii

Initial Distribution List 99

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Figures

Figure 1.1 DOD Autonomy Roadmap. Source [1]. 1

Figure 2.1 Determine If Adaptive Control Should Be Used. Adapted from [8]. 7

Figure 2.2 Traditional Model Reference Adaptive Control (MRAC) Architec-
ture. Adapted from [8]. 8

Figure 3.1 Direct MRAC Architecture . 12

Figure 3.2 Indirect MRAC Architecture 12

Figure 3.3 Direct MRAC Architecture with Low-Pass Filter 13

Figure 3.4 Non-Subtractable Low-Pass Implementation - Direct Architecture 14

Figure 3.5 Indirect MRAC Architecture with Low-Pass Filter 14

Figure 3.6 L1 Architecture with Matched Uncertainty Block Diagram. Source
[9]. 16

Figure 3.7 Digital Bi-quad Filter Architecture 21

Figure 3.8 Bi-linear Transform . 22

Figure 3.9 Digital Bi-quad Simplified First-Order Low-Pass Filter 25

Figure 3.10 Euler vs Trapezoidal Integration Error 27

Figure 4.1 Pixhawk 1 Autopilot Connection Diagram. Source [12]. 30

Figure 4.2 High Fidelity RealFlight 7.5 Software in the Loop (SITL) 33

Figure 4.3 Spear Airframe. Source [16]. 34

Figure 4.4 Spear Cargo Capacity. Source [16]. 34

Figure 4.5 Spear Build Process . 35

Figure 4.6 FliteTest Explorer. Source [16]. 36

xi

Figure 4.7 Explorer Cut Foamboard Parts 36

Figure 4.8 Pixhawk Autopilot Installed on Explorer 37

Figure 5.1 Maxi-Swift Flying Wing Model Used in X-Plane10 39

Figure 5.2 PID vs L1 Adaptive Control Pitch Performance 40

Figure 5.3 PID vs L1 Adaptive Control Coupled Pitch Response Performance 41

Figure 5.4 F4U Corsair Model in X-Plane10 42

Figure 5.5 Pitch Attitude Response Due to Gear and Flaps 43

Figure 5.6 Roll Attitude Performance . 44

Figure 5.7 Roll Response to Rudder Servo Hardover/Failure 45

Figure 5.8 Roll Response to Miscalibrated Aileron Servo 46

Figure 5.9 L1 Fast Adaptation to Unknown Miscalibration 46

Figure 5.10 PID vs L1 Adaptive Control Pitch Performance 48

Figure 5.11 Pitch Attitude Response Due to Gear and Flaps 49

Figure 5.12 PID vs L1 Adaptive Control Coupled Pitch Response Performance 50

Figure 5.13 L1 Adaptive Control Roll Performance 51

Figure 6.1 Aircraft Frequency Analysis . 55

Figure B.1 Reference Frame - Body Rates and Velocities. Adapted from [16]. 61

Figure C.1 Reverse Linear Chirp Example 68

Figure C.2 Roll Model Regression with Manual Inputs 70

Figure C.3 Roll Model Regression with Reverse Linear Chirp 70

Figure C.4 Non-Aliased Reverse Chirp Model Example 73

Figure E.1 Projection Operator - f (θ) . 80

xii

Figure E.2 Projection Operator with Offset Limits 81

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

List of Acronyms and Abbreviations

API application program interface

APM ArduPilotMega / Multi-Platform Autopilot

CG center of gravity

COTS commercial-off-the-shelf

DOD Department of Defense

EKF extended Kalman filter

FIR finite impulse response

GCS ground control station

GNC guidance navigation and control

GPS global positioning system

GUI graphical user interface

IIR infinite impulse response

IMU inertial measurement unit

LTI linear time invariant

mAh milli amp hour

MAV micro aerial vehicle

MEMS microelectromechanical systems

MIMO multiple input multiple output

MRAC model reference adaptive control

xv

NED north-east-down

ODE ordinary differential equation

OS operating system

PCHIP piecewise cubic hermite interpolating polynomial

PID proportional integral derivative

PWM pulse width modulation

RC remote controlled

SISO single input single output

SITL software in the loop

TF transfer function

UAS unmanned aerial system

VTOL vertical take off and landing

ZOH zero order hold

xvi

Executive Summary

The primary objective of this research was to determine if modern control techniques could
provide engineering cost and schedule savings for DOD/NAVY autonomous systems. A
waterfall systems engineering technique was utilized to evaluate the use of adaptive control
on fixed-wing unmanned aircraft. The growing demand for unmanned systems will inherit
the costs associated with guidance, navigation, and control. With the use of modern control
techniques, these costs could potentially be reduced—if not eliminated—as well as gaining
improved performance over the classical methods.

The field of adaptive control offers techniques for increasing performance and robustness
in numerous settings and applications. Adaptive control is different from traditional feed-
back in that it provides a mechanism for adjusting the controller’s parameters to reduce
plant uncertainty. Classical feedback control utilizes parameters, which are specified by the
engineer to optimize an ideal use case, which often requires extensive tuning and testing.
Adaptive controllers adjust their control parameters using various intelligent mechanisms
designed to increase robustness to plant variation or unanticipated disturbances. Adaptive
control has many applications in the aerospace domain to include control strategies when
aerodynamic coefficients are unknown or are non-constant, actuator failure, airframe dam-
age, etc. This research evaluates fixed wing UAS controller performance and robustness
using the L1 adaptive control architecture.

Successful integration of the L1 adaptive control algorithm was achieved utilizing dis-
cretization techniques on the Pixhawk 1 commercial autopilot. This algorithm was then
prototyped and tested utilizing MavProxy and X-Plane10 as a complete software in the loop
tool-chain. This enabled rapid prototyping and testing of the L1 algorithm in a high fidelity
environment ensuring successful integration onto prototype aircraft.

Two different prototype aircraft were constructed to perform flight tests of the L1 adaptive
controller with respect to the main objective of reducing the engineering demand required
to achieve successful flight. Multiple flights were conducted across both prototype aircraft
and achieved a drastic reduction the effort to achieve fully autonomous capabilities that also
outperformed conventional PID controllers.

xvii

Overall, theL1 adaptive controller implemented in this researchmet the primary objective of
reducing the engineering demand required of guidance navigation and control architectures.
This key performance benefit is realizable through the use of modern control techniques,
which also resulted in increased controller performance as well as improved battle damage
tolerance as ancillary byproducts of the improved architecture. Utilizing modern adaptive
control techniques has been shown as a reliable method for improved performance and
robust control which could result in immediate cost savings to the DOD/NAVY.

xviii

Acknowledgments

First, I would like to thank my beautiful wife. Her continued support and unwavering love
continue to enable me to achieve goals far beyond my own capability. My parents, Nolan
and Charmian Beall, continue to keep me grounded and remind me to always remember
what is important in life.

I would like to thank Oleg Yakimenko for his guidance and mentorship. His published
acumen is unparalleled and set a high goal for me to achieve some day.

Additionally, I would like to thank Vladimir Dobrokhodov who is an expert in all things
adaptive control. His numerous hours dedicated to discussing adaptive control were crucial
in solidifying my understanding.

Finally, I would like to thank Andrew Tridgell and the ArduPilotMega Development team
for their support and guidance on how to integrate into the APM infrastructure.

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

CHAPTER 1:
Introduction

1.1 DOD / NAVY Autonomous Roadmap
The Department of Defense (DOD) conducted an analysis of the role of autonomy, which
outlined technology gaps and predicted advancements required to meet the growing perfor-
mance demands [1]. The study amplifies the fact that autonomy is a challenging field and
that it is arguably in its infancy. The roadmap attempts to guide decision makers in ensuring
capitalization of under-utilized technology and succinct awareness of technical challenges
limiting the current state of the art. Figure 1.1 outlines these elements at increasing scope
of control comprised of various technology portfolios. The language referenced in the

Figure 1.1. DOD Autonomy Roadmap. Source [1].

roadmap often recommends that machine learning and/or artificial intelligence is needed
for elements such as “Fault Detection.” On the lowest level, the roadmap annotates the
use of guidance navigation and control (GNC) as neither needing improvement or current
technology being underutilized. An in-depth look at the current state of the art with respect

1

to GNC reveals that GNC is still very costly and arguably antiquated. Research of adaptive
control as applied to GNC offers new strategies offering improved performance and future
reduced cost.

1.2 Challenges in Designing Versatile Controllers
The unmanned aerial system (UAS) has evolved tremendously over the past decade. Minia-
ture autopilots have gotten smaller and cheaper with more sensitive and redundant sensor
packages largely due to the cellular phone industry accelerating microelectromechanical
systems (MEMS) technology. The ability to manufacture these autonomous systems at
fractions of the cost enables the advancement in multiple cooperative UAS applications in-
cluding swarming capability. This ability to mass-produce large quantities of UAS’s poses
an interesting challenge. Even though the price has gone down and the performance has
gone up, there still exists a significant amount of man-hours dedicated to sensor calibration
and autopilot control law configuration and tuning for optimal performance.

Over the past decade UAS avionics have drastically improved, but the fundamental control
law algorithms have not changed. The proportional integral derivative (PID) architecture
found its origin in automatic ship steering applications in 1922 [2]. Conventional control
law architectures for UASs predominately still use PID controllers. Their architecture offers
a well understood and predictable behavior for the class of linear systems. For this reason, it
is well suited for the aviation application. The detriment of PID control is that its application
is mostly constrained by its use on a linear plant and most aerospace applications are non-
linear and time varying. An aircraft’s control authority that increases proportionally to
dynamic pressure is one example of significant changes in aerodynamic non-linear control
behavior. In this case, the PID controller’s robustness to changes in velocity and/or density
altitude is not guaranteed and for most aircraft has to be delicately handled with lookup
tables produced from hours of flight test for given configurations.

Conventional controllers (PID) are difficult to tune and achieving an adequately tuned
controller requires a significant amount of time and resources. These difficulties can arise
because of many uncertainties with respect to the aircraft as outlined in the following three
subsections.

2

1.2.1 Unknown Constant Airframe Parameters
In the case where airframes are assembled by the same manufacturer, all aircraft still
require a tedious quality assurance check. Physical aspects of the airframes such as center
of gravity (CG), control surface deflection/calibration/speed, and airframe alignment all can
drastically vary within the same delivered batch of airframes. Additionally, these miniature
UASs experience hard landings, crashes, and/or damage in transportation, which all can
affect aerodynamic handling qualities.

1.2.2 Unknown Non-Constant Airframe Parameters
Aircraft with large airspeed envelopes or various configurations (vertical take off and land-
ing (VTOL), flaps, retractable landing gear), exhibit changing dynamics that challenge
conventional PID robustness. Because these dynamics are changing drastically, the PID
controllers either underperform or have to be over designed with ad-hoc gain scheduling
techniques which significantly increases the controller’s already complex tuning process.

1.2.3 Fault Tolerance
If an aircraft exhibits airframe faults or battle damage, the desirable outcome results in the
controller achieving robust performance. Classical PID controllers have limited to no ability
to cope with these types of failures. Conventional methods require a priori knowledge of
the failure scenario. Reconfiguration schemes are developed for specific failures, further
complicating designs.

1.3 Problem Formulation and Thesis Organization
This thesis addresses a problem of shortening the time for developing and fielding a new
autonomous aerial vehicle by utilizing an adaptive controller, which relaxes some of the
traditional constraints and assures better robustness in the case of airframe configuration
variation, various uncertainties, and faults.

To address the formulated problem, this thesis is organized as follows.

Chapter 2 provides an overview of modern adaptive control. The brief history of adaptive
control is introduced to further amplify the specific use case for aerospace applications.

3

The adaptive control architecture is compared with conventional feedback controllers (PID)
to clarify the distinction between the two approaches for stable and robust control. The
model reference adaptive control (MRAC) architecture is defined in order to articulate the
difference between the MRAC architecture and the specific modifications utilized in this
research to formulate the L1 adaptive controller.

Chapter 3 outlines the proposed adaptive controller architecture used instead of conventional
less-robust controllers. It addresses why the architecture must take the form of indirect
adaptive control vice direct adaptive control. The definition of estimated parameters are
defined with respect to the aerodynamics model derived in Appendix B. The filter section
of the controller used to bandwidth limit the controller is defined with respect to the specific
three parameter model chosen for this research. The L1 adaptive controller discretization
process is reviewed with respect to methods implemented to achieve integration on a
commercial-off-the-shelf (COTS) autopilot, which is described in Chapter 4.

Chapter 4 discusses the COTS autopilot and flight stack code chosen for this research. It
also covers the ground control station (GCS) and software in the loop (SITL) infrastructure
which was heavily utilized for initial code development, testing, and validation. Chapter 4
follows with the major steps undertake to prototype two airframes to be used in the flight
testing of the proposed controller.

Chapter 5 and 6 describe the results of computer simulations and flight tests, respectively.
Chapter 6 also outlines the shortcomings of the COTS autopilot architecture and improve-
ments specific to the L1 adaptive controller.

The thesis concludes with Chapter 7 providing conclusions.

4

CHAPTER 2:
Overview of Modern Control Techniques

This chapter is a general review of the history of adaptive control to include its use cases and
previous pitfalls. A brief overview of algorithm differences between conventional feedback
control and MRAC architectures is also covered.

2.1 Adaptive Control History
Adaptive control saw its early debut in the NASA North American X-15 hypersonic rocket-
powered X-plane experimental aircraft. The X-15’s performance envelope exceeded Mach
6.0 and 300,000 feet [3]. Engineers realized early on that the linear controllers performed
well only at one dynamic pressure, but nowhere near the entire flight envelope. Scheduling
the controller gains with respect to dynamic pressure (gain scheduling) was one method
used to help ensure robustness; the method is still widespread in commercial aviation due
to its robustness but requires a significant effort to explore the entire flight envelope. These
non-trivial efforts were what encouraged the exploration of the benefits of adaptive control.

The X-15 program started in 1959 and continued to 1968 flying nearly 200 successful
flights [4]. It was considered one of NASA’s most successful programs. The benefit of
adaptive control to the X-15 was that the adaptive controller was supposed to adjust the gain
parameters online automatically. If the controller was self-tuning, it could potentially offer
increased performance while reducing complexity. Honeywell implemented the MH-96
adaptive controller in the X-15-3 as a fly-by-wire controller designed to adaptively adjust
the damping in pitch and roll with respect to the desired model response. The goal was
to achieve consistent aircraft response regardless of dynamic pressure and other variables.
Dydek et. al comments that during test flights of the MH-96 adaptive control, increased
performance was observed especially in the dynamic phases of re-entry over that of the
linear fixed gain damping system [5]. These early breakthroughs in adaptive control proved
the benefits could be viable aerospace solutions. However, on November 15, 1967, there
was a fatal accident caused by the adaptive controller. NASA documented that the adaptive
controller created an out of control flight situation resulting in dynamic pressures exceeding

5

the structural limits and subsequent breakup of the airframe at 65,000 feet [4].

The turbulent start of adaptive control, as implemented on the X-15 program, was due in
large part to the early naive understanding of robustness. Contemporary robust adaptive
control strives to encapsulate these deficiencies of robustness in studies and proofs using
Lyapunov stability analysis. In addition to the developments of rigorous stability analysis
tools, a number of unique techniques have also been implemented to increase controller
robustness. One such technique utilizes dead band limits on the model adaptation process
to avoid system/measurement noise from causing the un-learning of the states and is called
“dead-zone modification” as proposed by B.B. Peterson and K.S. Narendra [6]. Lavretsky
and Wise also reference the “σ and e modifications” which adds damping to the adaptation
process [7]. TheL1 adaptive control algorithm utilizes a technique which seeks to decouple
the adaptation rate from robustness by “low-pass filtering” the contribution of the fast
estimator under the premise that estimating the entire frequency spectrum is overly ambitious
and should be limited to the bandwidth of the actuator-plant combination. Many advances
have been made in the adaptive control field over the past few decades, and this research sets
out to evaluate a small subset of these techniques in the unforgiving aerospace environment.

2.2 Classical Feedback vs Adaptive Control
Control of a system can be categorized into two required elements; the requirement to
stabilize the system in the presence of:

1. disturbances that affect the controlled states and outputs (pitch rate perturbation
caused by environmental effects)

2. disturbances that affect the dynamics of the open loop plant (pitch rate effectiveness
with respect to dynamic pressure)

Classical feedback control seeks to resolve disturbances that affect the tracking with respect
to state perturbation and assume that the plant dynamics are constant. This form of control
is meticulously tuned to achieve the desired overshoot and settling time for example. The
important assumption that is made by classical feedback controllers is that the underlying
plant/system dynamics are not changing. For example, the cruise control that maintains
a vehicle’s speed assumes that the available horsepower of the car is fixed. This is a

6

fairly good assumption as the horsepower with respect to rpm available at sea level and
5,000 feet for an internal combustion engine is constant enough that a fixed gain feedback
controller would perform well at maintaining the speed of the vehicle in both environments.
In the case of an airplane, the dynamic pressure is proportional to velocity squared and
can drastically change the performance of the aircraft. In this case, the constant system
performance assumption can cause a fixed gain classical feedback controller to go unstable
at higher dynamic pressures (higher airspeeds). Conversely, adaptive controllers assume
that the system performance is unknown and is likely to vary with time. Adaptive control
seeks to ensure a system’s performance with respect to characteristics, such as damping
ratio and settling time, which are kept constant regardless of a plant’s dynamics that may be
unknown and time varying. For both classical and adaptive control, there exists some form
of error which drives the controller. In the case of classical feedback, the error is calculated
between the command and the feedback state of the plant. In adaptive control (in general),
the error is calculated between the outputs of the desired reference model and real plant’s
measured performance.

Figure 2.1 outlines the decision making process a controls engineer makes when deciding
the type of controller needed for a given circumstance.

Figure 2.1. Determine If Adaptive Control Should Be Used. Adapted from
[8].

7

2.3 Model Reference Adaptive Control
MRAC establishes the foundation for most of modern, robust adaptive control. Its structure
is intuitive in nature and seeks to define a system’s response to a command signal with
a reference model. Unlike traditional feedback where the error signal is generated with
respect to state or output error, MRAC’s objective is to minimize the error between the
performance characteristics of a chosen reference model and the plant. The error between
the model response and the system response generates error for an “adjustment mechanism”
to learn the unknown model parameters.

Figure 2.2 illustrates a topology where a traditional feedback controller is established as
an inner loop and the “Reference Model” and “Adjustment Mechanism” is established as
an outer loop. The outer loop attempts to minimize the error between the reference model

Figure 2.2. Traditional Model Reference Adaptive Control (MRAC) Archi-
tecture. Adapted from [8].

output and the plant output. Two primary methods for using this error to learn the system
parameters are: gradient descent and Lyapunov stability theory.

2.3.1 MIT Rule - Gradient Descent
One of the first approaches to the design of MRAC controllers was implemented at the
Instrument Labs at MIT (now known as Draper Labs). The gradient descent based method

8

was called the “MIT Rule” for this reason [8]. This method attempts to learn some unknown
parameter by descending the gradient of the error between the reference model and the plant
output.

Given the simple first-order system G(s):

G(s) = kdc
1

s + 1
(2.1)

where kdc is some unknown feedforward gain. In the case of the MIT rule, kdc is the
parameter to be learned and is defined as θ. The first step in the MIT rule is to establish a
cost (or loss) function. One example of a cost function J (θ) is:

J (θ) =
1
2

e2 (2.2)

e = y − ym (2.3)

where e is error, y is the plant output, and ym is the model output.

In order for the cost function to be minimized, the negative gradient of the cost function is
calculated and used to correct the a priori estimate. This method takes the following form
where γ is the adaptation gain:

dθ
dt
= −γ

∂J
∂θ
= −γe

∂e
∂θ

(2.4)

The stability of this method is very system dependent and heavily relies on trial and error to
ensure the adaptation gain (γ) is not too high. This usually requires low adaptation rates for
most systems and may not produce adequate results. It should also be noted that this method
relies on adequate persistence of excitation [8]. In simple terms, the persistence of excitation
condition guarantees some functional correspondence between the error and the unknown
parameters θ. If the error signal is sufficiently rich, then the partial derivative is explicitly
evaluated by the adaptation process running recursively. Additionally, gradient descents
are subject to local extreme convergence for non-convex manifolds. Therefore, this method
does not explicitly guarantee parameter convergence even though correct steady-state gain

9

is achieved for the closed loop system.

With the differences between classical feedback control and adaptive control being dis-
cussed, the next chapter applies analytical tools to develop a specific adaptive control
architecture to address the requirements outlined in Chapter 1.

10

CHAPTER 3:
Engineering of Adaptive Control

This chapter outlines the pertinent aspects of the L1 adaptive control architecture used for
this research. The distinction between direct and indirect adaptive control is made in order
to illustrate the importance of why the indirect architecture is critical for the L1 algorithm.
This chapter also defines the parameter estimates provided by theL1 algorithm with respect
to the aerodynamic model simplifications outlined in Appendix B. Finally, the L1 adaptive
control filter is explained and the methods used for discretizing the algorithm for autopilot
integration are discussed. It should be noted that the versions of the L1 adaptive controller
have been patented and proper licensing should be considered if commercial use is desired.

3.1 L1 Adaptive Control
TheL1 adaptive controller is an evolution of the concepts implemented byMRAC. They are
similar approaches designed to control a system with unknown parameters. The estimates
of unknown parameters are adjusted to achieve the desired outcome of the error between the
actual plant (system) and the referenced system model (state predictor) to asymptotically
approach zero. Adaptive control attempts to estimate the plant’s unknown parameters in
situ. Parameter estimation is done using either direct or indirect architecture. The indirect
architecture attempts to estimate the system’s parameters and can be compared to online
system identification. Alternately, the easier to implement direct architecture estimates the
controller parameters explicitly. These architectures can be seen in Figures 3.1 and 3.2.

3.1.1 Reference Model versus Companion Model
Traditional MRAC controllers often refer to the system objective function as the “Reference
Model.” In this case, the engineer designs a reference model response, and it is from this
model response that the error state is calculated directly. Because the L1 adaptive control
implements the use of a filter in conjunction with a model objective function, the model is
often referred to as the “Companion Model.” This subtle distinction is necessary because
the engineer must be aware that the system response will be with respect to the filter plus

11

Figure 3.1. Direct MRAC Architecture

Figure 3.2. Indirect MRAC Architecture

the companion model in series. In other words, the plant will not mimic the companion
model; it will mimic the companion model plus the filter section.

3.1.2 L1 Architecture
The L1 adaptive control algorithm asserts that trying to control the plant uncertainties
outside of the control actuators’ bandwidth is overly ambitious. The system’s actuator
bandwidth and the slow dynamics of the plant are most commonly the system’s limiting
factors, and the estimator’s robustness/stability could be in question if unmodeled high-

12

frequency content exists in the plant. The L1 adaptive control constrains the objective
function by using a low-pass filter (first or second-order) to limit the frequency response to
meet robustness specifications. This low-pass filter should be tuned to a frequency response
commensurate with the actuator’s frequency response. Through inspection the low-pass
filter placement in the controller topology, it becomes clear that the indirect architecture is
the only candidate. Figures 3.3 and 3.5 illustrate the placement of the low-pass filter and its
implication on the closed loop model.

Figure 3.3. Direct MRAC Architecture with Low-Pass Filter

It can be seen in Figure 3.3 that the direct architecture implementation of the low-pass filter
introduces difficulties. The companionmodel (state predictor) is defined using aerodynamic
model and the stability is verified for a Lyapunov candidate function. However, these
underpinnings designed in the companionmodel become nonsensical in the implementation
found in Figure 3.4 because the filter is applied to the plant and notmodeled in the companion
model. This specific filter placement is non-subtractable when the error state is calculated
because it is not applied in both signal paths (plant and state predictor).

Conversely, the indirect approach offers an implementation which ensures the low-pass filter
is applied to both the companion model (state predictor) and the plant ensuring that the
interaction of the filter is subtractable when calculating the error state.

It can be seen that the low-pass filter in the direct architecture inherently changes the
structure of the plant with the cascading of the low-pass filter and plant block diagrams.
This change mathematically is not mirrored in the companion model (state predictor) and
therefore is not subtractable. This means that the state predictor is modeling incomplete

13

Figure 3.4. Non-Subtractable Low-Pass Implementation - Direct Architec-
ture

Figure 3.5. Indirect MRAC Architecture with Low-Pass Filter

information and therefore will incorrectly characterize the system. However, in the indirect
case, the structure of the model is kept intact, and the low-pass filter is applied to both
the plant and the state predictor. This ensures that the low-pass filter is subtractable when
calculating the error state and the model’s structure is kept intact.

Many variations of theL1 adaptive architectures have been derived for various use cases [9].
Some of the following forms were studied for viability in the fixed wing UAS use case with
respect to state parameters (θ, ω, σ) as described in Figure 3.6 and Section 3.2:

• single input single output (SISO) with constant but unknown state parameters

14

• SISO with time variant and/or nonlinear unknown bounded state parameters
• multiple input multiple output (MIMO) with constant but unknown state parameters
• MIMO with time variant and/or nonlinear unknown bounded state parameters

MIMO control algorithms would potentially afford the controller more ability to cope with
system coupling if present. Fixed wing UAS equations of motion, as seen in Equation B.11,
exhibit coupled behavior both in the aerodynamic and inertial coupling. However, MIMO
was not chosen due to the added complexity required to architect the algorithm into source
code. Matched uncertainty are terms that can be factored from the controlmatrix (B) and can
be time invariant. Unmatched uncertainties are typicallymodeled as process noise impacting
the state (ẋ) directly regardless of control. The unmatched uncertainty architecture offers a
more appealing solution for fixed wing use cases (asymmetric actuator failure, aerodynamic
coefficients scaled by dynamic pressure), but adds a significant amount of complexity to the
architecture. In summary, the SISO architecture with matched uncertainty was chosen for
this research.

The SISO controller with matched uncertainty was selected to control pitch rate (q) and
roll rate (p) of the aircraft using two separate controllers. The simplified equations in
Equation B.13 assume that there is no aerodynamic or inertial coupling in order to simplify
the model. This simplification was chosen to make the controller as airframe agnostic
as possible while enabling very simple applications in code. Utilizing this simplified
architecture may be at the detriment of controller performance, but as seen by the flight test
results in Section 5.2, the baseline performance is adequate to achieve performance which
is better than PID in some cases. In this implementation of the L1 adaptive controller, the
desired state x to be controlled was an individual body rate (e.g., q, p).

As seen in Figure 3.6, the generalized L1 architecture in block diagram form and the
following elements can be identified

kg - feed forward input gain
k - feedback gain
D(s) - user described filter (second-order low-pass plus integrator)
η̂ - L1 controller state
ẋ - first-order differential equation of state model
x̂ - state estimate

15

Figure 3.6. L1 Architecture with Matched Uncertainty Block Diagram.
Source [9].

x̃ - state error
u - controller output
r - reference input
Am - Hurwitz matrix
b - input matrix
ω̂ - unknown input gain coefficient
θ̂ - unknown constant state coefficient
σ̂ - unknown disturbance estimate
Γ - adaptation gain
Pb - solution to the Lyapunov stability equation

It should also be noted that the architecture presented in Figure 3.6 includes the use of a
projection operator. The estimation dynamics of ˙̂ω, ˙̂θ, and ˙̂σ are projection based adaptation
laws. This ensures that the adaptation stays bounded around the feasible region of parameter
space. The Lyapunov stability proofs for this architecture rely on this method to guarantee
stability [9]. More discussion on the specific implementation of this operator can be found
in Appendix E.

One of the main benefits of using the SISO architecture is in its simplicity so that the
solution to the Lyapunov stability equation (Pb) utilized in the projection based adaptation
laws is greatly simplified.

16

In this case, Pb reduces to:
Pb =

1
2ωn

(3.1)

where ωn is the natural frequency in rad/s for the first-order companion model in discrete
recursive form assuming DC gain of 1. The proof for this can be found in Appendix F.4.

3.2 L1 Parameter Estimation
Three model parameters were evaluated in this research. The first model parameter θ
establishes the baseline architecture and Lyapunov stability proof. Each additional model
parameter added to the architecture adds complexity to the architecture and its required
stability proofs. The general progressive build up of the three parameter architecture
is outlined in the nomenclature for the estimation of a system with unknown constant
parameters, input/output disturbances, and an unknown system input gain.

The L1 adaptive control algorithm is primarily used to estimate unknown constant system
parameters. These system parameters are defined as θ as seen in the following model:

ẋ(t) = Ax(t) + b(u(t) + θ>(t)x(t)) (3.2)

The second adaptive element is the estimation of the input/output disturbances (σ). This
additional parameter is implemented in this research as any unmodeled transient dynamics
such as aerodynamic/inertial coupling. This model takes the form

ẋ(t) = Ax(t) + b(u(t) + θ>(t)x(t) + σ(t)) (3.3)

The last adaptive element used for this research was the estimation of unknown system
input gain (ω). Estimating the unknown system input gain offers the controller the ability
to estimate the actuator effectiveness for changes in dynamic pressure or failed control
surfaces. This model takes the form

ẋ(t) = Ax(t) + b(ω(t)u(t) + θ>(t)x(t) + σ(t)) (3.4)

17

The model in Equation 3.4 can be paralleled to the aircraft model derived in Equation B.14.
As a result, the roll rate model takes the similar form

ˆ̇p = Ap p̂ + bp
(
ω̂pδa + θ̂pp + σ̂p

)
(3.5)

This final model, with the inclusion of all three estimated parameters (ω̂, θ̂, σ̂), established
the architecture tested in this research. The fundamental assumption that the aerodynamic
and inertial coupling was negligible and set to zero as outlined in Equation B.13 is agreeably
a gross assumption which may prove to be inadequate for stable flight. These assumptions
presume that the estimated input/output disturbance (σ̂) would be adequate to compensate
for these unmodeled dynamics and were validated by successful flight test in Section 5.2.

These derivations of theL1 algorithm guarantees that the error between the model and plant
asymptotically approaches zero, but this does not imply the constraint that the estimated
parameters are in fact converging to their real values. The algorithm only guarantees that
the parameters are bounded and therefore it is common to observe the parameters never
reaching steady-state. The engineer must ensure that the bounds set on the parameters
are sufficient for the controlled system to not become unstable. In the discrete form, the
algorithm can have numerical floating point instability if these projection operator bounds
are too high and not thoroughly tested in simulation.

3.3 L1 Filter - C(s)
One of the key features of theL1 adaptive controller is that the robustness of the controller is
decoupled from the adaptation rate. This is handled in the filter section of theL1 architecture
which is annotated as C(s). To ensure guaranteed stability of the L1 algorithm, C(s) must
be verified as strictly-proper stable. With the architecture that includes the system input
gain (ω), one cannot simply apply a stand alone filter. The inclusion ofω in the architecture
block diagram in Figure 3.6 slightly modifies the signal output and takes the following form

u(s) = −kD(s)(η̂(s) − kgr (s)) (3.6)

18

where D(s) is the new user defined filter and C(s) now takes the form

ω ∈ Ω0 , [ωl0, ωu0]

C(s) =
ωkD(s)

1 + ωkD(s)

(3.7)

In the case which the user defined function D(s) is a simple integrator, C(s) takes the form

D(s) =
1
s

C(s) =
ωk

s + ωk

(3.8)

The feedback gain k should not be assumed to be 1 in this case. As seen in Equation 3.8, the
C(s) transfer function is a function of k that can have significant influence on the controller
output. In actual implementation, k was found to be one of the most influential gains in
the architecture and extremely critical in specifying the transition between robustness and
performance. The feedback gain k must be set to low enough to prevent high frequencies
to the actuators, and high enough to ensure the L1 norm stability conditions [9].

3.4 L1 Discrete Time Implementation
Implementing any algorithm on actual autopilot hardware will inevitably force some if not
all parts of the algorithm to be discretized. Autopilots like the Pixhawk operate at some
scheduled loop rate for executing the litany of subprograms that measure sensors, calculate
navigation commands, and much more. In the case of the Pixhawk autopilot, the main loop
can run up to 400 Hz. At a 400 Hz sampling rate, there is a significant insurance that the
vehicle’s dynamics bandwidth will be completely defined. However, the ArduPilotMega
/ Multi-Platform Autopilot (APM) flight stack records all logged parameters also at this
loop rate and can create log files larger than are reasonably desired. There are a myriad
of other reasons why the engineer would not want to run at high loop rates, but successful
flight at the lowest (default of 50 Hz) is desired if adequate performance of the adaptive
control can be achieved. Failures in early adaptive control were largely in part due to a
very naive understanding of robustness. Brian Anderson concludes that “it is clear that
the identification time scale needs to be faster than the plant variation time scale, else

19

identification cannot keep up” [10].

The L1 architecture does not require the algorithm to run in sync with the sensor measure-
ments. Ideally, the autopilot main loop rate would remain at its default value (50Hz), and the
adaptation section of the L1 controller would run as fast as the CPU would allow. However,
the APM architecture does not lend itself well to this scheme in its current configuration
without significant modification to the code base. Therefore, the initial tests presumed that
the L1 algorithm is running at the same frequency as the main loop of the autopilot. The
fundamental derivation of the L1 algorithm proves that performance and adaptation gain
are maximized as the loop time (dt) approaches zero. Increased performance would come
from higher adaptation loop rates, but the primary focus was to implement theL1 algorithm
with minimal or no detrimental effects to the current APM codebase.

3.4.1 Digital Bi-Quad Filter
The L1 adaptive control algorithm utilizes two specific elements that will require careful
discretization; the companion model and the low-pass filter. The digital bi-quad filter offers
a very versatile and straightforward method for accurately implementing the companion
model and the low-pass filter discretely using its recursive nature. It is a second-order filter
which uses a finite impulse response (FIR) front end and an infinite impulse response (IIR)
back end requiring four total memory blocks. This topology allows the designer to create
numerous types of filters (low-pass, high-pass, band-pass) simply by choosing appropriate
coefficients. If a first-order filter is needed, then the higher order FIR/IIR terms can be set
to zero. Figure 3.7 illustrates this filter’s topology where the FIR structure is the left two
memory blocks and the IIR structure is the right two memory blocks.

A bilinear Z transform is used to convert the desired S-domain (continuous time domain)
filter/model into the Z-domain (discrete time domain) to determine the structure of the
coefficients.

This derivation for the second-order low-pass model is

H (s) =
1

s2 + s
Q + 1

(3.9)

20

Figure 3.7. Digital Bi-quad Filter Architecture

where the bi-linear transform converts s to z via

s =
(

1
K

) (
z − 1
z + 1

)
(3.10)

K is the “pre-warping” factor which accounts for the transition of the vertical s-plane into
the circular z-plane as seen in Figure 3.8.

where ωT is

ωT = 2π
(

Fc

Fs

)
(3.11)

K = tan
(
ωT
2

)
= tan

(
π

Fc

Fs

) (3.12)

21

Figure 3.8. Bi-linear Transform

Fc is the desired corner frequency of the filter and Fs is the sampling rate (or loop rate of the
autopilot). This “pre-warping” is critical to ensure that the continuous time cutoff frequency
desired is correctly established in the discrete implementation. It is the engineer’s discretion
if pre-warping is required for the appropriate application, but the general guidance is to pre-
warp the Z-domain coefficients if the desired cut-off frequency is close to Nyquist–Shannon
sampling theorem frequency (Fs

2). It was chosen for this application to always pre-warp the
coefficients even though the error is small for corner frequencies which are fairly distant
from Nyquist–Shannon sampling theorem frequency. Continuous calculation of the pre-
warp coefficient was chosen because calculating the tan() function real time on the CPU
adds negligible computational strain but offers ease of tuning for the engineer.

Applying the bi-linear transform to the continuous time second-order low-pass filter results
in

H (z) =
1

[(
1
K

) (
z−1
z+1

)]2
+

(
1
K

) (
z−1
z+1

)
Q + 1

(3.13)

22

The desired form is

H (z) =
b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2 (3.14)

Reducing Equation 3.13 to match the form in Equation 3.14 results in the following coeffi-
cients

a0 = 1

a1 =
2(K2 − 1)

K2 + K
Q + 1

a2 =
K2 − K

Q + 1

K2 + K
Q + 1

b0 =
K2

K2 + K
Q + 1

b1 = 2b0

b2 = b0

(3.15)

The bandwidth of the filter Q can be set by the engineer. For example, if the pass-band of
the filter is desired to be flat (Butterworth) then Q can be set equal to 1√

2
. For this research,

the following C++ code segments were used to explicitly calculate the bi-quad low-pass
filter implementation [11]:

void D i g i t a l B i q u a d F i l t e r <T> : : compute_params (f l o a t s amp le_ f r eq ,
f l o a t c u t o f f _ f r e q , b iquad_pa rams &r e t) {

r e t . c u t o f f _ f r e q = c u t o f f _ f r e q ;
r e t . s amp l e_ f r e q = s amp l e_ f r e q ;

f l o a t f r = s amp l e_ f r e q / c u t o f f _ f r e q ;
f l o a t K = t a n f (M_PI / f r) ; / / Pre−Warp c a l c u l a t i o n
f l o a t c = 1 . 0 f +2 .0 f ∗ c o s f (M_PI / 4 . 0 f)∗K + K∗K;

23

r e t . b0 = K∗K/ c ;
r e t . b1 = 2 . 0 f ∗ r e t . b0 ;
r e t . b2 = r e t . b0 ;
r e t . a1 = 2 . 0 f ∗ (K∗K−1.0 f) / c ;
r e t . a2 = (1 . 0 f −2.0 f ∗ c o s f (M_PI / 4 . 0 f)∗K+K∗K) / c ;

}

T D i g i t a l B i q u a d F i l t e r <T> : : app ly (cons t T &sample ,
cons t s t r u c t b iquad_pa rams ¶ms) {

T de l ay_e l emen t _0 = sample − _de l ay_e l emen t_1 ∗ params . a1
− _de l ay_e l emen t_2 ∗ params . a2 ;

T ou t p u t = de l ay_e l emen t _0 ∗ params . b0
+ _de l ay_e l emen t_1 ∗ params . b1
+ _de l ay_e l emen t_2 ∗ params . b2 ;

_de l ay_e l emen t_2 = _de l ay_e l emen t_1 ;
_de l ay_e l emen t_1 = de l ay_e l emen t _0 ;

re turn ou t p u t ;
}

This implementation can be employed as theL1 low-pass filter and as the companionmodel.
It can be seen in the code segment that K , the pre-warp factor, is explicitly calculated every
iteration.

3.4.2 Simplified Bi-quad First-order Model
In the case of the companion model, a first-order response may be desired. As described
in equations A.2 and A.4, the discrete first-order model can be derived from a simplified
Bi-quad as seen in Figure 3.9. It can be seen that the first coefficient of the IIR filter is kept
from this topology.

The first-order model can be specified by either its time constant (time in seconds to reach
63% of steady-state) or its -3dB corner frequency. The system takes the form as seen in
Equation 3.16 when defined by its corner frequency

24

Figure 3.9. Digital Bi-quad Simplified First-Order Low-Pass Filter

H (s) =
ωn

s + ωn
(3.16)

Therefore, the explicit calculation of the Bi-quad coefficients in this case becomes

a1 = e
(
−ωn
Fs

)
b0 = 1 − a1

(3.17)

where ωn is the -3dB corner frequency in radians per second and Fs is the sampling
frequency measured in Hertz.

Therefore, the discrete recursive form of the first-order model becomes

yi+1 = a1 yi−1 + b0 yi (3.18)

Another form designed to optimize for speed that is commonly seen in software is

25

f l o a t b_0=exp (− f _ c / f _ s) ;
f l o a t ou t +=(in −ou t)∗ b_0 ;

3.4.3 Euler vs. Trapezoid Rule
Themodel estimate, as well as the parameter estimates for theL1 algorithm, are both numer-
ically estimated using discrete integration. The Euler method is a numerical procedure for
solving ordinary differential equations. The Euler method as applied to discrete integration
is the fundamental method for recursively integrating a digital signal. The algorithm takes
the form:
where h is the uniform step size,

yi+1 = yi + h f (ti, yi) (3.19)

The recursive trapezoidal method takes the form

ỹi+1 = yi + h f (ti, yi)

yi+1 = yi +
h
2

[f (ti, yi) + f (ti+1, ỹi+1)]
(3.20)

Comparing the accuracy of the two numerical methods for discretely calculating the integral
of y = et can be seen in Figure 3.10

As seen in Equation 3.20, the recursive trapezoidal integration method only adds one more
line of complexity to the algorithm for a significant gain in accuracy and therefore will be
the chosen method applied for all discrete numerical integration in this research and takes
the form

f l o a t t r a p _ i n t e g r a t i o n (f l o a t y0 , f l o a t y1_dot , f l o a t dt , f l o a t &y0_dot)
{

f l o a t y1 = y0 + (d t / 2) ∗ (y0_do t+y1_do t) ;
y0_do t = y1_do t ;

re turn y1 ;
}

26

Figure 3.10. Euler vs Trapezoidal Integration Error

With the L1 adaptive control algorithm defined in discrete form utilizing the architecture
in Figure 3.6 and the discretization methods outlined in Section 3.4 enabled the simulation
testing found in Chapter 5. Flight testing was also desired and therefore multiple test aircraft
were designed and built as seen in Chapter 4 with integrated COTS autopilots.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

CHAPTER 4:
Design of Experimental Platform

This chapter presents the COTS autopilots used in this research as well as outlining the
Linux toolchain used to conduct |acSITL and GCS operations. This chapter also introduces
the airframes that were prototyped for testing specific performance characteristics discussed
in Chapter 5.

4.1 Pixhawk Autopilot
The Pixhawk autopilot is a collaborative project among open-source engineers which re-
sulted in a high-performance autopilot which is capable of controlling aircraft, ground
vehicles, and many others. The primary reason this autopilot was chosen was because of
the vast amount of support in the developer community. The Pixhawk 1 autopilot hardware
is effectively obsolete at the time of this writing, but the open-source code base is extremely
flexible and continues to be ported to new hardware as it becomes available. This has been
the case for various Raspberry Pi autopilots as well as the Pixhawk 2. The Pixhawk autopilot
operates using two flight stacks (code base/operating systems); the PX4 flight stack and the
APM flight stack. This research was implemented on the APM flight stack primarily be-
cause the author’s familiarity with the developer team which offers unparalleled assistance
to the academic community. The APM codebase also offers a litany of open-source tools
such as a Linux based GCS, SITL simulator, log analysis tools, and an application program
interface (API) for the RealFlight 7.5 simulator (high fidelity airframe simulation for small
aircraft).

Figure 4.1 illustrates the connection diagram for the Pixhawk 1 autopilot.

4.1.1 Key Features
The Pixhawk 1 Autopilot has the following features as found on [12]:

• 168 MHz / 252 MIPS Cortex-M4F

29

Figure 4.1. Pixhawk 1 Autopilot Connection Diagram. Source [12].

• 14 PWM / Servo outputs (8 with failsafe and manual override, 6 auxiliary, high-power
compatible)

• Abundant connectivity options for additional peripherals (UART, I2C, CAN)
• Integrated backup system for in-flight recovery and manual override with dedicated
processor and stand-alone power supply (fixed-wing use)

• Backup system integrates mixing, providing consistent autopilot and manual override
mixing modes (fixed wing use)

• Redundant power supply inputs and automatic failover

30

• External safety switch
• Multicolor LED main visual indicator
• High-power, multi-tone piezo audio indicator
• microSD card for high-rate logging over extended periods of time

4.1.2 Specifications
The Pixhawk 1 Autopilot has the following specifications as found on [12]:

Processor
• 32bit STM32F427 Cortex M4 core with FPU
• 168 MHz
• 256 KB RAM
• 2 MB Flash
• 32 bit STM32F103 failsafe co-processor

Sensors
• ST Micro L3GD20H 16 bit gyroscope
• ST Micro LSM303D 14 bit accelerometer / magnetometer
• Invensense MPU 6000 3-axis accelerometer/gyroscope
• MEAS MS5611 barometer

Interfaces
• 5x UART (serial ports), one high-power capable, 2x with HW flow control
• 2x CAN (one with internal 3.3V transceiver, one on expansion connector)
• Spektrum DSM / DSM2 / DSM-X® Satellite compatible input
• Futaba S.BUS® compatible input and output
• PPM sum signal input
• RSSI (PWM or voltage) input
• I2C
• SPI
• 3.3 and 6.6V ADC inputs
• Internal microUSB port and external microUSB port extension

31

4.2 Ground Control Station
The GCS used for this research was MAVproxy [13]. It is an open-source python based
GCS which provides flexible communication and command with any autopilot utilizing
the MAVlink protocol [14]. Even though MAVproxy is written in Python (operating
system (OS) agnostics language), it was found to be cumbersome to operate the GCS on
any other platform other than Linux. This is primarily because the source code updates
quite rapidly to support new features and the core developer (Andrew Tridgell) exclusively
utilizes MAVproxy in Linux. A significant amount of external libraries are utilized which
results in a moderate amount of compatibility debugging for other OS’s if desired.

4.2.1 MAVproxy Features
The following are summaries which proved to be extremely useful for this research [15]:

• command-line, console based application. Plugins included in MAVProxy provide a
basic graphical user interface (GUI).

• network capable and run over any number of computers.
• portable; capable of running on any POSIX OS with Python, pyserial, and select()
function calls, which means Linux, OS X, Windows, and others.

• light-weight design; runs on small netbooks.
• tab-completion of commands.

4.3 Simulation
The APM environment offers three versions of SITL simulations. The lowest fidelity
SITL is provided by MAVproxy, which is a simple 6-degree of freedom kinematics model
with no environment or actuator modeling. This proved to be adequate for initial testing but
resulted in poorly tuned algorithms when actual flight tests were conducted. TheMAVproxy
simulator was used for basic code debugging but nothing else.

The second SITL offered in the APM environment is X-plane 10. This is a much higher
fidelity simulation, which includes actuator models and environmental modeling. X-plane
10 is primarily used for simulating full-scale aircraft and therefore is difficult to find models,
which accurately represent the dynamics of small fixed-wing UAS. The open-source

32

community provided model called the “maxi-swift” was similar enough to the airframe in
this research that it provided adequate SITL modeling which ensured robust flight test.

The last SITL simulation tested under the APM environment was the RealFlight 7.5 API.
The RealFlight remote controlled (RC) airplane simulator offers some of the industry’s
highest fidelity simulations for small aircraft. This product requires an API key to hook into
MAVproxy. This capability is not yet on the market as of the time of this research, but the
APM core developers were supportive of this research and ran multiple experiments with
the RealFlight SITL for early validation. The screenshot in Figure 4.2 was captured while
conducting testing utilizing the RealFlight SITL.

Figure 4.2. High Fidelity RealFlight 7.5 Software in the Loop (SITL)

4.4 Airframe
The aircraft used for this research was the Flitetest Spear and the Flitetest Explorer [16].
The Spear airframe was chosen for its endurance capability of greater than 45 minutes of
flight time and its large capacity fuselage. The flying-wing architecture keeps the actuation
requirement to a minimum of two servos by utilizing an elevon configuration.

Figures 4.3 and 4.4 are example photos from the instructional build website [16]. Figure 4.5
illustrates the process of building the Spear aircraft. The large blunt nose provides adequate
space for two 2,200 mAh (12.6volts) lithium polymer batteries wired in parallel. The
remaining cargo space was used for accommodating the Pixhawk autopilot.

33

Figure 4.3. Spear Airframe. Source [16].

Figure 4.4. Spear Cargo Capacity. Source [16].

This plane was constructed out of craft foam board. The plans were downloaded from
flitetest.com [16] and converted to CorelDraw vector files for use in a laser cutter. These
files were then cut out of four sheets of foam board using the laser cutter. The wing
halves were joined with standard box tape and hot glue. This provided a cheap and rapid
construction process which was achievable under four hours of build time.

4.4.1 Spear Specifications
• weight without battery: 1.45 lbs (658 g)
• center of gravity: 3 – 3.5” (76 – 89 mm) in front of firewall
• control surface throws: 16◦deflection – Expo 30%
• wingspan: 41 inches (1041 mm)

34

Figure 4.5. Spear Build Process

• motor: 425 sized, 1200 kv minimum
• prop: 9 x 4.5 CW (reverse) prop
• electronic speed control (ESC): 30 amp minimum
• battery: (2) 2200 mAH 12.6 volt minimum
• servos: (2) 9 gram servos

The Explorer airframe was chosen because it is a conventional airframe with highly coupled
aerodynamics which can be configured in multiple different failure modes. The sport wing
provided in the plans was modified to have independently actuated flaps, and ailerons for
a combination of software enabled failure modes. This aircraft was also configured with
a rudder for testing the lateral aerodynamics coupling effects on the adaptive controller.
Figure 4.6 illustrates the completed Explorer airframe used in this research. Figures 4.7
and 4.8 are examples of the Explorer build process and autopilot integration.

4.4.2 Explorer Specifications
• weight without battery: 1.08 lbs (493 g)
• center of gravity: 2.25” (57 mm) from leading edge of wing
• control surface throws: 12◦deflection – Expo 30%
• wingspan: 57 inches (1447 mm)
• motor: 425 sized, 1000 kv minimum
• prop: 9 x 6 CW (reverse) prop
• ESC: 30 amp minimum
• battery: (1) 2200 mAH 12.6 volt minimum

35

• servos: (6) 9 gram servos

Figure 4.6. FliteTest Explorer. Source [16].

Figure 4.7. Explorer Cut Foamboard Parts

The previously discussed COTS autopilot, Linux software tool chain for SITL and GCS,
and prototype aircraft were utilized to present the results found in Chapter 5.

36

Figure 4.8. Pixhawk Autopilot Installed on Explorer

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

CHAPTER 5:
Flight Testing and Performance Evaluation

This chapter utilizes the APM SITL architecture as well as prototype aircraft to tune and
test the L1 adaptive control algorithm to highlight performance parameters which meet or
exceed the underlying requirements established in the problem proposal in Chapter 1. For
all graphs in Chapter 5, the green background identifies when the adaptive control algorithm
was being utilized.

5.1 Simulation Results
Simulation results were captured utilizing the APM SITL using X-Plane10. The aircraft
model chosen was an open-source flying wing model called the maxi-swift as seen in
Figure 5.1, a simulation photo.

Figure 5.1. Maxi-Swift Flying Wing Model Used in X-Plane10

This plane did not afford proper testing of elevon mixing, but the fidelity in the model
provided utilizing X-Plane10 was surprisingly accurate with respect to the FT-Spear aircraft
used for actual flight test. This drastically increased confidence that anything tested in SITL
would have a high probability of success in actual flight test.

39

5.1.1 Pitch Attitude Performance
It can be seen in Figure 5.2 that there exists some steady state error when under PID control.
This phenomenon is more pronounced when the desired pitch attitude is negative. This
steady state error is due to the increase in lift caused by the increasing airspeed. The
PID controller underperforms in this regime. However, the adaptive controller is able to
compensate for these dynamics fast enough to track the desired attitude with no steady state
error. The green background in Figure 5.2 identifies when the adaptive control was being
utilized and the white background was utilizing the PID control.

Figure 5.2. PID vs L1 Adaptive Control Pitch Performance

40

5.1.2 Roll Induced Pitch Disturbance
When rapidly rolling the maxi-swift aircraft in simulation, there was a noticeable coupling
in the pitch axis. The PID controller struggles to correct this discrepancy because the time
constant of the integral error simply cannot be increased high enough to achieve satisfactory
compensation. As seen in Figure 5.3, the L1 adaptive controller significantly reduced the
pitching disturbance due to rapid rolling.

Figure 5.3. PID vs L1 Adaptive Control Coupled Pitch Response Perfor-
mance

5.1.3 Pitch due to Landing Gear and Flaps
Lowering the landing gear and flaps entering the landing phase of flight causes un-
commanded deviation in pitch. The F4U Corsair (see Figure 5.4) in X-Plane10 was used to
evaluate the attitude hold retention performance. This un-modeled aerodynamics can cause

41

the integrator in a PID controller to saturate or wind up. Figure 5.5 illustrates the pitch
performance during the actuation of flaps and gear with and with out adaptive control.

Figure 5.4. F4U Corsair Model in X-Plane10

The L1 adaptive controller significantly reduces the attitude excursion due to flaps and
landing gear.

5.1.4 Roll Performance
Adaptive control offered little improvement to roll performance with respect to the nominal
attitude retention. The roll axis for multiple aircraft was typically seen to have higher cutoff
frequencies with respect to pitch and therefore required higher values for the D(s) cut off
frequencies. Figure 5.6 illustrates that the adaptive controller is capable of achieving equal
or improved performance over the PID controller.

5.1.5 Yaw to Roll Coupling
The roll dynamics are coupled to the yaw dynamics as seen in Equation B.11. In the case
of an actuator/servo hardover in the yaw channel, the coupling causes unwanted rolling
moments. Figure 5.7 compares a left and right yaw servo hard over for both PID and
the L1 controller. The adaptive controller significantly outperforms the PID controller in
maintaining the desired roll. It could be argued that the PID controller’s integrator time
constant could be re-tuned to be comparable. It was evident for each of the simulation

42

Figure 5.5. Pitch Attitude Response Due to Gear and Flaps

tests that tuning the PID for every scenario would likely have been possible individually to
achieve similar performance to the L1 . However, the L1 was not tuned between each of
these tests and outperformed PID in most, if not all cases.

5.1.6 Actuator Miscalibration
The L1 adaptive control provided fast learning of airframe actuator miscalibrations. The
autopilot parameter SERVOX_TRIM was used to offset the ailerons by 15% of their travel
to evaluate how quickly the controller was capable of adapting to the new offset. This was
tested first on the PID controller and then on the L1 as seen in Figure 5.8.

It can be seen in Figure 5.8 and 5.9 that the new trim value achieves the reference command
in about 0.5 seconds for the L1 . The L1 is slightly faster than PID, but the L1 exhibits
some overshoot. It is important to note that this rate of learning is perfectly adequate
for learning the miscalibrations in flight, but is insufficient for learning on take off. In the

43

Figure 5.6. Roll Attitude Performance

takeoff circumstance, the algorithm saturates the actuator if biases exist between desired and
achieved. Because the aircraft has no dynamic pressure (it is not flying), the desired cannot
be achieved. This causes controller saturation, which cannot be unwound fast enough for
take-off (specifically for tail-dragger configuration). This has to be handled with ad-hoc
heuristics very delicately. One could choose to speed scale the learned parameters to help
with learning rate, but it was not chosen for this research because this controller is also
utilized in tail-sitter configurations where the zero airspeed would cause the controller to
refuse to learn when in VTOL mode.

5.2 Flight Test Results
After successful results were achieved utilizing the SITL environment across multiple
aircraft, similar test techniques were conducted on the prototype aircraft described in
Chapter 4.

44

Figure 5.7. Roll Response to Rudder Servo Hardover/Failure

5.2.1 General Observations
The FT Spear aircraft was used in all initial flight tests to prove the algorithm’s initial
robustness and facilitate testing of various tuning scenarios. Choosing this aircraft proved
to be beneficial because it provided 30 or more minutes of endurance. The flying wing
architecture had a slight forward CG when configured with two 2200 milli amp hour (mAh)
batteries. This resulted in the aircraft being anemic in pitch response but still adequate for
testing the L1 algorithm. Various iterations of the algorithm were tested and compared to
the results observed in SITL as the development progressed.

The first observation was that the algorithm, even when poorly tuned, was bounded in
response and never approached instability. The gains found in SITL when applied to actual
flight test always resulted in stable flight. As discussed in Section 6.1, the first flight
tests of gains found in SITL either produced low-frequency oscillations or high-frequency
oscillations. Low-frequency oscillations occurred when the L1 filter cutoff bandwidth was
set too low. High-frequency oscillations occurred when the L1 filter cutoff bandwidth was

45

Figure 5.8. Roll Response to Miscalibrated Aileron Servo

Figure 5.9. L1 Fast Adaptation to Unknown Miscalibration

set too high. Tuning the filter to achieve adequate response somewhere between the low and
high-frequency oscillations was easily achievable within three to four iterations of setting
the filter cutoff frequency. Finding the optimal filter setting is arguably difficult to see on

46

the low refresh rate telemetry, but achieving similar or better performance than PID was
easily attained with very minimal effort.

Once the algorithmwas well understood and properly implemented in code, flight tests were
then conducted on the FT Explorer aircraft. This aircraft provided more test opportunities
because multiple aircraft configurations could be tested with various combinations of flaps
and rudder.

5.2.2 Pitch Performance
As demonstrated in Figure 5.10, the simulation results almost identically matched the flight
test results for pitch response. As the aircraft pitches down, the airspeed builds and causes a
building steady state error that the integrator time constant struggles to out pace. This was
observed both in simulation and in flight test. The L1 adaptive controller’s fast adaptation
was sufficient to counteract this unmodeled pitching moment. These results drastically
increased the confidence both in the SITL fidelity as well as the L1 adaptive controller.

5.2.3 Pitch due to Landing Gear and Flaps
The L1 adaptive controller performed well when compensating for the change in aircraft
configuration when lowering the flaps. Figure 5.11 illustrates that the tracking error from
lowering and raising the flaps under adaptive control is almost imperceptible. However,
PID resulted in a sharp peak both when lowering and raising the flaps.

5.2.4 Roll Induced Pitch Disturbance
The aircraft max roll angle was set to ±45◦to achieve rapid roll while trying to maintain a
zero pitch attitude. This rapid roll maneuver caused significant excursions in pitch when
under PID. However, the L1 controller maintains the pitch attitude within ±3◦. It can be
noticed in Figure 5.12, that the adaptive controller oscillates around zero pitch attitude,
while the PID has more random excursions. The slight sinusoidal behavior or the L1

controller is likely due to the cutoff frequency of the filter being slightly too low. This
maneuver may possibly be utilized to fine tune the L1 ’s filter cutoff frequency for pitch.

47

Figure 5.10. PID vs L1 Adaptive Control Pitch Performance

5.2.5 Roll Performance
To test the nominal flight path stability and roll attitude performance, a rectangular flight plan
was established. Figure 5.13 illustrates theL1 adaptive controller while maintaining the left
hand pattern. The noise in the roll channel was observed in actual flight as turbulence. The
filter cutoff frequency could be lowered to reduce performance if desired, but these results
were not oscillatory which suggested that the filter cutoff frequency was not too high. These
results compare to the noise found on the PID channel so the threat of damaging servo by
over driving them was not expected.

Asymmetric flaps were configured by only allowing one servo to lower the left flap while
leaving the right flap stationary. This failure was designed to test the unmodeled roll
response from a very asymmetric mechanical failure. Unfortunately, the roll and pitch

48

Figure 5.11. Pitch Attitude Response Due to Gear and Flaps

excursions caused by this failure were marginal. Both PID and the L1 handled this failure
with adequate reliability.

The overall result of the performance testing of the L1 algorithm was quite successful. The
results from SITL provided confidence in the expected results from actual flight test and
proved to be robust representations of the results achieved in flight test. Flight test were
significantly more difficult to conduct, but the mirrored performance between the SITL
and flight tests proved that more time can be spent utilizing SITL to drastically reduce
development cost and schedule.

49

Figure 5.12. PID vs L1 Adaptive Control Coupled Pitch Response Perfor-
mance

50

Figure 5.13. L1 Adaptive Control Roll Performance

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

CHAPTER 6:
Recommendation

This chapter provides various recommendations pertinent to the integration of the L1 adap-
tive control algorithm. These recommendations may be more qualitative than quantitative,
but provide experience based guidance for the engineer to better understand the nuances of
the L1 adaptive control algorithm. Prior to this research, there was very little experientially
based guidance on implementation of this algorithm which proved to be the largest barrier
for implementing this modern controller.

6.1 L1 Adaptive Control Algorithm Tuning
The primary goal of this research was to reduce the complexity of tuning expertise required
to get an unknown airframe airborne successfully. The amount of time required to get
the adequate airframe performance using the L1 algorithm is significantly reduced. Three
primary features need tuning: the adaptation gain, the controller filter, and the companion
model.

6.1.1 Tuning the Adaptation gain
Tuning the adaptation gain is fairly intuitive. The adaptation gain is a function of the loop
frequency at which the filter is run so it may only need to be tuned for a given autopilot
at a given loop rate and not for every specific aircraft. Anecdotally, the adaptation gain
of 10,000 was used on the Pixhawk1 autopilot running the scheduled loop rate at 100Hz
across multiple aircraft without needing to modify. The primary feedback to the user for
tuning this gain resides in the desired movement of the estimated states. The adaptation
gain was set low (1-10) while watching the parameters (θ, ω, σ) adapt. The adaptation gain
is slowly increased until the desired rate of adaptation as seen in the real time monitoring of
the parameters is adequate. Another approach for tuning the adaptation rate is to increase
the gain until parameters start to oscillate between the bounds and then reduce it. This
bang-bang response in the parameter adaptation will show up in the performance of the
controller as increased peaks away from zero error between desired and achieved. In the
case of this research, this noise can be hard to identify in the rate control itself and therefore

53

is why monitoring the attitude error helps find the appropriate adaptation gain which is
extremely high but still not injecting attitude error spikes.

6.1.2 Tuning the Controller Filter
The adaptation feedback gain (k), as discussed in Section 3.3 was by far the most influential
gain to tune. The simplicity of tuning theL1 algorithm resides in the fact that themajority of
lay users could adequately tune an airframe with this stand-alone gain. Adequate values for
this gain ranged from 0.3 for responsive aircraft and 2.0 for very sluggish aircraft. This value
was set for both the roll and pitch axis independently. As seen in Equation 3.8, this value
is establishing the cutoff frequency of the control filter that separates the bandwidth limited
control channel output and the high bandwidth adaptation. The default value assigned in
the source code was 0.45, which proved to be a good starting point. If the default value
for k is not correct, then the control channel will produce either low-frequency oscillations
or high-frequency oscillations. The low-frequency oscillations are produced because the
bandwidth of the control is too low and there should be a perceptible lag between the
desired state and the achieved state. High-frequency oscillations occur when the control
filter bandwidth is set higher than the plant’s bandwidth, and the aircraft is incapable of
achieving the desired rates. Unlike PID control, the L1 control never exhibited unstable
performance with incorrect gains. The controller simply oscillates with extremely poor
performance. This was a remarkable feature because poorly tuned PID gains can cause an
aircraft to depart controlled flight rapidly. Whereas, the L1 controller maintained bounded
flight performance as the theory suggests.

6.1.3 Tuning the Companion Model Cutoff Frequency
System identification was conducted as seen in Appendix C in order to ascertain the
bandwidth of various airframes and their actuators. Figure 6.1 is an example of second-
order models for two aircraft’s roll dynamics compared to second-order models of RC
actuators (servos). As to be expected, the bandwidth for the actuators is slightly higher than
the airframe dynamics.

These rough approximationswere used to then place the cutoff frequencies of the companion
model with the expectation that the companion model cannot achieve higher bandwidths
than that of the airframe. Conservatively, the companion model cutoff frequency was

54

Figure 6.1. Aircraft Frequency Analysis

typically set 2-5 rad/s lower than the expected max performance of the airframe. After the
other algorithm gains are tuned, and satisfactory performance is achieved, the companion
model cutoff frequency can then be increased to achieve higher performance.

6.2 Improved Recursive Architecture
The speed of adaptation and accuracy of the discretizedL1 algorithm is drastically improved
with increased loop frequency. The algorithm was written as one recursive architecture that
updates at the Pixhawk’s scheduled loop rate. As previously discussed, the scheduled loop
rate ideally should run at lower frequencies to prevent excessive log file size and added strain
on the CPU. However, the L1 architecture only requires the adaptation loop be run at faster
rates. With this specific performance enhancement in mind, the APM architecture could
be modified to accept an independent loop specifically for the L1 adaptation update. The
sensors measurements and extended Kalman filter (EKF) update can run significantly lower
with only increased performance of the algorithm. The higher adaptation loop would enable
higher adaptation gains (Γ) and consequently produce faster adaptation of the system.

55

6.3 Integrator Windup Issue
The L1 controller architecture exhibits a similar response to integrator wind up in PID
controlwhen the aircraft is not flying. If the controllerwas enabled before takeoff, the control
surfaces would move to counteract any slight deviation from input to output attempting to
zero the error. Because the aircraft was not flying, the controller would continue to increase
the control output until the actuators reached saturation. The baseline code was configured
to ensure that the parameter estimates would not continue to integrate after saturation was
reached. This technique is standard practice when writing control laws that utilize actuators
that have saturation limitations. However, the anti-windup feature that this offers only
occurs when the actuators are saturated. This is inadequate for the takeoff scenario. The
flight surfaces quickly saturate while waiting for takeoff and cause a crash immediately
upon takeoff. It is standard practice to also disable the integrator action of controllers if it
is known that the aircraft is not flying using any combination of airspeed, throttle position,
inertial measurement unit (IMU) estimated velocity, or global positioning system (GPS)
ground speed. In the case of the L1 algorithm, the integrator utilized in D(s) is essential
to the entire architecture and presented challenges in how to use ad-hoc methods to prevent
the integrator windup issue even though the “non-flying” state was calculable onboard the
autopilot. The initial experiments were to see if the adaptation rate was fast enough to
un-learn the aircraft’s saturated state, but there were no combinations of filter gains which
resulted in learning rates adequate to ensure safe takeoffs. Further research in this area is
required to completely replace the PID controller with the L1 . All takeoffs were conducted
either in manual control or with the PID controller enabled until safely airborne.

In summary, no onemanual has been created for this type of controller’s implementation and
integration. The recommendations provided may only apply to this specific implementation
of the L1 adaptive controller, but it offers guidance where none previously was articulated
in contemporary literature.

56

CHAPTER 7:
Conclusion

The primary objective of this thesis was to evaluate a modern control technique to determine
if the advanced controller could reduce the Navy’s growing GNC demand on engineering
resources.

The L1 adaptive control algorithm suggested and developed in this thesis proved to be a
successful alternative to the conventional PID control strategy which drastically reduced the
cost and time requirements to achieve robust flight. In addition to meeting the objective of
lowering the engineering demand of the aircraft GNC algorithms, the L1 adaptive control
could also provide battle damage tolerance and achieve more accurate control with the
utilization of fast and robust adaptation.

Conversion of the continuous timeL1 algorithm proved to be difficult with limited precedent
literature but proved to be quite achievable with very little limitation posed by contemporary
embedded processors. TheAPMflight stack open source project proved to be a very versatile
software base that enable rapid prototyping and testing of the L1 algorithm.

The use of SITL was a critical tool in the development of this algorithm into source
code. Follow on research or implementation of aircraft GNC in the simulation environment
drastically reduces the project risk at little to no expense using contemporary high fidelity
aircraft simulation tools.

Flight test of the L1 algorithm highlighted many capabilities gained through the use of
fast and robust adaptation. The primary goal of reducing the GNC engineering demand
required to achieve successful robust flight of UAS’s was evident even on the first test
flights. Achieving adequate flight performance was now attainable within a matter of
minutes instead of multiple tests spread across multiple flights potentially spread across
multiple days. With the use of SITL integration, a robust model of the airframe, and more
dedicated research, successful first flights with no tuning required are now within the realm
of possibility.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A:
Transfer Functions

A.1 Transfer Functions
This research utilizes the transfer function (TF) representation of aircraft flight dynamics
that is typical of linear time invariant (LTI) systems. A transfer function is a very useful
approach to describe the relationship between inputs and outputs of LTI systems. Both
analytically and numerically, the TF approach has significant benefits in continuous and
discrete time domains as its construct is based on well-developed properties and primitives
of polynomials. These polynomial representations in the s or z domain map to aerodynamic
and inertial coefficients through equations of motion. What is unknown or partially known
a priori, are the numerical values of coefficients for those polynomials. Therefore the tools
from the areas of online estimation such as regression are utilized to solve for them.

Transfer functions take the form

H (s) =
Y (s)
X (s)

(A.1)

where

Y(s) is the Laplace transform of the output
X(s) is the Laplace transform of the input

Standard physics models of first and second order form are well understood and seen in
many model derivations. The first-order model takes the form

H (s) =
kdc

τs + 1
=

ωn

s + ωn
(A.2)

where

kdc is the DC gain

59

τ is the system time constant (time in seconds to reach 63% of steady state)
ωn is the natural frequency of the first order system

Similarly the standard form for a second-order system takes the form

H (s) =
ω2

0

s2 + 2ζω0s + ω2
0

(A.3)

where

ω0 is the system natural frequency in radians per second
ζ is the system damping ratio

The modeling of a system can also be converted to a system of first-order differential
equations also known as state-space modeling. In this case, the first-order system model
can be represented as

ẋ(t) = Ax(t) + Bu(t) (A.4)

where ẋ is the time derivative of the state, A is the state transition matrix with all its
eigenvalues chosen negative (Hurwitz), B is the input matrix, and u is the input vector.

60

APPENDIX B:
Fixed Wing Aircraft Dynamics Model

B.1 Fixed Wing Aircraft Dynamics Model
The following is the nomenclature used to describe the fixed-wing kinematic equations.
Euler angles for pitch (θ), roll (φ), and yaw (ψ) have the units of radians. Figure B.1
illustrates the north-east-down (NED) reference frame definitions used for body rotational
rates about the x axis (p), y axis (q), and the z axis (r), as well as the body velocities in
the x axis (u), y axis (v), and the z axis (w).

Figure B.1. Reference Frame - Body Rates and Velocities. Adapted from
[16].

Newton’s second law as it pertains to rotational motion can be stated as

τ = J
dω
dti

(B.1)

where τ is the torques applied to the body, J is the moment of inertia, and dω
dti

is the angular

61

acceleration of the body with respect to the inertial frame.

Equation B.1 can be rewritten in the body reference frame as follows:

τb = Jω̇b
b/i + ω

b
b/i ×

(
Jωb

b/i

)
(B.2)

The expression ω̇b
b/i is the angular acceleration in the body frame as viewed in the body

frame

ω̇b
b/i =

*....
,

ṗ

q̇

ṙ

+////
-

(B.3)

The equation can then be rewritten with respect to ω̇b
b/i in Equation B.3

ω̇b
b/i = J−1

[
−ωb

b/i ×
(
Jωb

b/i

)
+ τb

]
(B.4)

where J is the inertia matrix as follows:

J =
*....
,

Jx −Jx y −Jxz

−Jx y Jy −Jy z

−Jxz −Jy z Jz

+////
-

(B.5)

The moments of inertia, or the diagonal terms, are always non-zero for any rigid body. The
products of inertia, or the off-diagonal terms, are terms which describe the inertial coupling
between axis. For a traditional fixed wing aircraft, the natural symmetry will simplify the
inertia matrix in the off-diagonal terms as follows:

J =
*....
,

Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

+////
-

(B.6)

62

The inverse of J can be found to be

J−1 =

*....
,

Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ

+////
-

(B.7)

where

Γ = Jx Jz − J2
xz (B.8)

Aircraft nomenclature for torques are defined τ , (l,m, n)T , and therefore the combined
equations derived from first principles take the form

*....
,

ṗ

q̇

ṙ

+////
-

=

*....
,

Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ

+////
-

*....
,

0 r −q

−r 0 p

q −p 0

+////
-

*....
,

Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

+////
-

*....
,

p

q

r

+////
-

+

*....
,

l

m

n

+////
-

=

*....
,

Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ

+////
-

*....
,

Jxz pq + (Jy − Jz)qr

Jxz (r2 − p2) + (Jz − Jx)pr

(Jx − Jy)pq − Jxzqr

+////
-

+

*....
,

l

m

n

+////
-

=

*....
,

Γ1pq − Γ2qr + Γ3l + Γ4n

Γ5pr − Γ6(p2 − r2) + 1
Jy

m

Γ7pq − Γ1qr + Γ4l + Γ8n

+////
-

(B.9)

where

63

Γ1 =
Jxz (Jx − Jy + Jz)

Γ

Γ2 =
Jz (Jz − Jy) + J2

xz

Γ

Γ3 =
Jz

Γ

Γ4 =
Jxz

Γ

Γ5 =
Jz − Jx

Jy

Γ6 =
Jxz

Jy

Γ7 =
Jx (Jx − Jy) + J2

xz

Γ

Γ8 =
Jx

Γ

(B.10)

The aerodynamic torques (excluding propulsive torques) can be found to be

*....
,

l

m

n

+////
-

=
1
2
ρV 2

a S
*....
,

b
[
Cl0 + Clβ β + Clp

b
2V a p + Clr

b
2Va

r + Clδa δa + Clδr δr
]

c
[
Cm0 + Cmαα + Cmq

c
2Va

q + Cmδe
δe

]

b
[
Cn0 + Cnβ β + Cnp

b
2V a p + Cnr

b
2Va

r + Cnδa δa + Cnδr δr
]

+////
-

(B.11)

where Cl0,Clβ,Clp,Clr,Clδa ,Clδr ,Cn0,Cnβ,Cnp,Cnr,Cnδa ,Cnδr are the lateral aerodynamic
coefficients

and Cm0,Cmα,Cmq,Cmδe
are the longitudinal aerodynamic coefficients.

Substituting the aerodynamic torques found in Equation B.11 into Equation B.9 results

64

in [17]

ṗ = Γ1pq − Γ2qr +
1
2
ρV 2

a Sb
[
Cp0 + Cpβ β + Cpp

bp
2Va
+ Cpr

br
2Va
+ Cpδa δa + Cpδr δr

]

q̇ = Γ5pr − Γ6(p2 − r2) +
1
2
ρV 2

a Sc
1
Jy

[
Cm0 + Cmαα + Cmq

cq
2Va
+ Cmδe

δe

]

ṙ = Γ7pq − Γ1qr +
1
2
ρV 2

a Sb
[
Cr0 + Crβ β + Crp

bp
2Va
+ Crr

br
2Va
+ Crδa δa + Crδr δr

]

(B.12)

Simplifying Equation B.12 assuming no inertial or aerodynamic coupling results in

ṗ =
1
2
ρV 2

a Sb
[
Cpδa δa + Cpp

bp
2Va
+ Cp0

]

q̇ =
1
2
ρV 2

a Sc
1
Jy

[
Cmδe

δe + Cmq

cq
2Va
+ Cm0

]

ṙ =
1
2
ρV 2

a Sb
[
Crδr δr + Crr

br
2Va
+ Cr0

]
(B.13)

The equations in B.13 are then slightly modified to fit the first-order ordinary differential
equation (ODE) model as described in Equation A.4

ṗ = Ap p̂ + bp
(
ω̂pδa + θ̂pp + σ̂p

)
q̇ = Aqq̂ + bq

(
ω̂qδe + θ̂qq + σ̂q

)
ṙ = Ar r̂ + br

(
ω̂rδr + θ̂rr + σ̂r

) (B.14)

where ω is the input gain coefficient, θ is the constant state coefficient, and σ is the
disturbance estimate.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

APPENDIX C:
System Identification

C.1 System Identification
System identification was performed to scope the author’s expectation for the bandwidth of
small fixed wing unmanned airframes. This was conducted in order to properly establish
cutoff frequencies for the companion model. These results are also mirrored in Figure 6.1
and discussed in Chapter 6.

C.1.1 Data Collection
The Pixhawk autopilot was used to capture roll and pitch rates (ṗ, q̇) for the test vehicle as
well as the pilot’s command inputs. These outputs and inputs were the essential building
blocks for creating pitch rate and roll rate models for the test vehicle. The autopilot is
capable of logging data at 50-400 Hz that is represented as a discrete time domain signal.
This data should ultimately be manipulated into the s-domain. The mathematics for this
procedure are well defined, and numerous tools can be used to simplify this process [18].

It is crucial to ensure there is sufficient frequency content in the data recorded. Exciting
multiple frequencies in the time domain ensures the regression techniques have an adequate
persistence of excitation to resolve polynomial coefficients with higher certainty.

To ensure sufficient frequency content was obtained from the aircraft, a linear chirp was
chosen and implemented into the Pixhawk source code as follows:

x(t) = sin

φ0 + 2π

(
f0t +

k
2

t2
)

(C.1)

where

φ0 is the initial phase of the chirp at t=0 (nominally zero degrees)
f0 is the initial frequency at t=0

67

k is the chirp rate
t is time in seconds

An example of this method can be seen in Figure C.1.

Figure C.1. Reverse Linear Chirp Example

Specifically for this research, the reverse formulation of the linear chirp was used because
it ensured the aircraft wouldn’t exceed max roll or pitch limits within the first few cycles
of the output. The reverse chirp was applied in open loop while in “training mode” which
would constrain the angle of bank or pitch by switching into attitude hold mode upon an
attitude exceedance.

C.1.2 z-Domain to s-Domain
The logged input and output data in discrete form requires shaping to convert cleanly into
an s-domain representation. The first step is ensuring that the data is of constant sampling
rate. In other words, the time between samples is uniform from sample to sample. The data
provided from the Pixhawk autopilot does not have a uniform sampling rate. The sample
rate is a user-defined rate (50-400Hz) but has a slight amount of jitter (±0.1%). piecewise
cubic hermite interpolating polynomial (PCHIP) interpolation was used to interpolate the
data into a uniform sampling rate.

After the data is shaped correctly with a uniform sample rate, the discrete data is transformed
into a continuous approximation using a zero order hold (ZOH) technique. Taking the

68

Laplace transform of the continuous input/output data will convert it into the s-domain, and
finally, a non-linear least squares minimization algorithm can be run to find the polynomial
coefficients which best fit the data.

The order of the regression (number of polynomials to estimate) is at the discretion of
the engineer and their intuition of system’s physical representation. Higher order models
will better fit the data, but in most cases, they tend to overfit the data; therefore some
tradeoffs should be considered to simplify the model. Most aircraft models reasonably limit
the system to an LTI and second-order. These fundamental aerodynamics models divide
the modeling into longitudinal and lateral dynamics. Each axis of the aircraft is assigned
two-second order responses. Pitch, for example, has a second order response in the pitch
damping mode (also known as the short period) and also has a second order response in the
transition of kinetic energy to potential energy (also known as the long-period or phugoid).
Both first order and second order models were estimated for comparison sake.

Results were collected from two flight test events. The first flight test was conducted under
manual control without utilizing the chirp. The pilot attempted to increase frequency of
the input signal manually. The second set of data collected was via the reverse linear chirp
method previously described.

The manually piloted acquired data was expected to have insufficient frequency content
in the signal. However, the manual flight test provided moderate results for modeling the
aircraft as seen in Figure C.2 .

The results in Figure C.2 demonstrates the utility of this technique even if data can only
be acquired from manual pilot inputs. It can be seen that the second order model starts
to misrepresent the data at higher frequencies. Figure C.3 illustrates the data recorded
from the reverse chirp experiment run at 50Hz. The δ pulse width modulation (PWM) input
channel data clearly does not represent the software calculated chirp. The highest frequency
designed to be outputted during this experiment was 10Hz. 10 Hz is significantly less than
the frequency required to meet Nyquist sampling criterion (25Hz) for this data sampling
rate. However, there are clear patterns of aliasing in the input signal as recorded by the data
flash logger.

The chirp response was physically observed on pre-flight, in actual flight, and in the data-

69

Figure C.2. Roll Model Regression with Manual Inputs

Figure C.3. Roll Model Regression with Reverse Linear Chirp

70

flash logged body rate of the aircraft. However, the aliased input channel was arbitrarily
biasing the regression result. The significant aliasing in the logged input was not due to
insufficient sampling rate as previously discussed. After inspection, the peculiar aliasing
issue was hardware specific to the Pixhawk 1 autopilot in how the main CPU sends servo
commands to the auxiliary I/O CPU. The most recent version of firmware, at the time of
this test, improperly logs the PWM through an aliased prone signal path. The main and I/O
CPU both run at 50Hz with some appreciable clock drift. This generates a noticeable beat
frequency and delay when the actual values in registry are saved for PWM values are sent
back round trip to the main CPU. The implication of logging the PWM values at the very
end of the digital transmission line seems valuable in principle because the values being
logged are the undeniable values being sent to the actuators. However, the cost of logging
these values in this manner on the Pixhawk architecture incurs significant aliasing at almost
all frequencies. Logging the commanded PWM values before being sent to I/O CPU solved
the aliasing discrepancy and produced very frequency rich models.

The manually piloted acquired data provided viable data source for the models even though
it is a very simplistic approach. There were two separate manual tests run on the same
aircraft on the same flight, and the following are the results using this regression technique
to model a second-order system:

H (s) =
10.39

s2 + 31.26s + 504.9
(C.2)

and

H (s) =
10.61

s2 + 29.77s + 498.7
(C.3)

Converting to standard form as described in Equation A.3 yields

H (s) =
0.0206 ∗ 22.472

s2 + 2 ∗ 0.69 ∗ 22.47s + 22.472 (C.4)

and

71

H (s) =
0.0213 ∗ 22.332

s2 + 2 ∗ 0.67 ∗ 22.33s + 22.332 (C.5)

It is important to note that this system identification technique run on separate sets of data
has produced two models with very similar values for ωn and ζ .

This produces the average values of

ωn = 22.4rad/s

k = 0.0209
ζ = 0.681

With the aliasing removed from the chirped input command signals as previously described,
the model is drastically improved and produces the following results:

H (s) =
4.409

s2 + 27.11s + 430.6
(C.6)

and

H (s) =
3.295

s2 + 18.82s + 296.5
(C.7)

Converting to standard form as described in Equation A.3 results in

H (s) =
0.0102 ∗ 20.752

s2 + 2 ∗ 0.65 ∗ 20.75s + 20.752 (C.8)

and

H (s) =
0.0111 ∗ 17.212

s2 + 2 ∗ 0.54 ∗ 17.21s + 17.212 (C.9)

The comparison of the model to recorded results is seen in Figure C.4.

72

Figure C.4. Non-Aliased Reverse Chirp Model Example

This produces the average values of

ωn = 18.98rad/s

k = 0.010
ζ = 0.598

In the author’s experience, these values are reasonable values for this size and weight
of airframe based on multiple system identification experiments in SITL across multiple
airframes as well as actual test flights of three different airframes. This regression technique
has shown potential to create realistic models from actual flight test data. The data must be
properly shaped. The reverse chirp method has the potential to increase the fidelity of the
high-frequency response of the aircraft if the aliasing issue can be resolved on the command
input channel.

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX D:
Lyapunov Stability Definition

Aerospace designs tend to use linear controllers as reference models for their simplicity and
well-understood robustness characteristics. This is despite the fact that the applications of
these linear controllers are applied to a non-linear dynamical system such as attitude control
with varying dynamic pressure. Adaptive Controllers are non-linear and may offer per-
formance benefits to non-linear systems as seen in aforementioned aerospace applications.
However, non-linear controller’s stability properties need to be evaluated. The Lyapunov
stability criteria offer methods of evaluating these controller’s boundedness and robustness
behavior.

Aleksandr Lyapunov was a Russian mathematician who’s work was published in 1892 [19]
concerning the behavior of non-linear systems close to equilibrium without having to
rigorously find the unique solutions to difficult differential equations used to model the
system. His work was largely overlooked until the Cold War when aerospace solutions
required a more rigorous approach to analyzing non-linear control robustness. Modern non-
linear control engineers extensively utilize Lyapunov’s techniques to design and evaluate
non-linear controllers.

D.1 Lyapunov Stability Theory
According to Lyapunov, the stability properties of a system can be classified as stable,
asymptotically stable, and exponentially stable.

Given the following autonomous nonlinear system:

ẋ(t) = f (x(t)), x(0) = x0 (D.1)

where f has equilibrium at xe :
f (xe) = 0 (D.2)

75

then the equilibrium is said to be:

1. Lyapunov Stable
for every ε > 0 there exists a δ > 0 such that, if ‖x(0) − xe‖ < δ, then for every
t ≥ 0 we have ‖x(t) − xe‖ < ε

2. Asymptotically Stable
if the system is Lyapunov stable and there exists a δ > 0 such that if ‖x(0) − xe‖ < δ,
then lim

t→∞
‖x(t) − xe‖ = 0

3. Exponentially Stable
if the system is asymptotically stable and there exists α > 0, β > 0, δ > 0 such that if
‖x(0) − xe‖ < δ, then ‖x(t) − xe‖ ≤ α‖x(0) − xe‖ e−βt , for all t ≥ 0

Being Lyapunov stable infers that if a system is near equilibrium, then it will indefinitely
remain near equilibrium. If the system if found to be asymptotically stable then it eventu-
ally will achieve equilibrium as t → ∞ and being exponentially stable implies it reaches
equilibrium with a rate of convergence β.

Lyapunov’s Second Method
Lyapunov’s second method is also known as Lyapunov stability criteria. This method offers
a less tenuous method for evaluating mathematically non-ideal systems. Lyapunov analysis
of the linearized system around equilibrium can be cumbersome when the eigenvalues are
purely imaginary. In this case, the solutions can rapidly depart to infinity or approach zero
with little perturbation to the eigenvalues. Lyapunov’s second method offers an alternative
approach for classifying a system’s stability using a concept that is similar to how total
energy is defined in classical mechanics.

Conceptually, Lyapunov’s second method can be compared to the evaluation of mechanical
system similar to the modeling of energy in a vibrating spring mass system. The energy of
the unforced spring mass system will dissipate energy due to friction and or damping. This
trend of energy leaving the system towards some “attractor” is evidence of the system’s
stability characteristics and identifies that there will be some stable end state. Likewise,
Lyapunov’s second method specifies this with the use of a Lyapunov candidate function
V (x) which implicitly characterizes the total energy of the system. It is important to note
that Lyapunov realized that the candidate function could be any positive definite and radially

76

unbounded function. It is then said to be Lyapunov stable if any candidate function is found
and meets the stability criteria. This means that it is only incumbent upon the engineer to
find one candidate function to meet the criteria. This can be an iterative process of trying
various energy like equations. A common approach is to model the Lyapunov candidate
equation as kinetic energy (1

2u2). Lyapunov realized that characterizing the energy of a
nonlinear system could be almost impossible for some cases, but this approach could prove
stability without the rigorous knowledge of the true system’s energy.

Lyapunov’s second method defines a system as Lyapunov Stable for a system ẋ = f (x)
having an equilibrium point at x = 0where the Lyapunov candidate functionV (x) : Rn → R

such that:

• V (x) = 0 if and only if x = 0
• V (x) > 0 if and only if x , 0
• V̇ (x) = d

dt V (x) =
n∑

i=1
∂V
∂xi

fi (x) ≤ 0, for all values of x , 0

if V̇ (x) < 0 for x , 0 then system is asymptotically stable.

Additionally, it is required to demonstrate the condition of radial unboundedness to ensure
the system is globally stable [20].

77

THIS PAGE INTENTIONALLY LEFT BLANK

78

APPENDIX E:
Projection Operator

E.1 Derivation of Projection Operator Proj (θ, y)
In this section, the projection operator will be defined. Adaptive controllers often use the
projection operator in their adaptive laws to ensure uniform boundedness of the system error.
This can aid in faster adaptation and ensure controller closed-loop stability. The projection
operator attempts to mathematically achieve two objectives; ensure the Lyapunov function
time derivative remains negative semi-definite, and to keep the estimated parameters uni-
formly bounded. Using the projection operator ensures that θ is locally Lipchitz continuous
even though the input y is piecewise continuous. The projection operator as utilized in this
research is defined as

Proj (θ, y) ,

y if f (θ) > 0,

y if f (θ) ≤ 0 and ∇ f > y ≥ 0,

y −
∇ f
‖∇ f ‖

〈
∇ f
‖∇ f ‖ , y

〉
f (θ) if f (θ) ≤ 0 and ∇ f > y < 0.

(E.1)

where ε > 0
f (θ) = −

θ2 − θ2
max

εθ2
max

(E.2)

∇ f > = −
2θ

εθ2
max

(E.3)

The projection function chosen for this research is parabolic and has inflection points at user
defined maximum/minimum bands. Equation E.2 is plotted in Figure E.1 with example
maximum/minimum of 0.65 and various values for ε . The engineer must set the value
for ε to achieve the desired slope of the projection at the maximum values. This slope
should be steep enough to capture the highest expected error given one recursion through
the algorithm.

79

Figure E.1. Projection Operator - f (θ)

There may exists systems which need to have projection bounds which are not symmetrical
about zero. This was found to be the case for this research and therefore the following
projection function was used to assist the engineer tuning the algorithm:

where ε > 0
f (θ) = −

4(θmin − θ)(θmax − θ)
ε (θmax − θmin)2 (E.4)

∇ f > =
4(θmin + θmax − 2θ)
ε (θmax − θmin)2 (E.5)

Equation E.4 is plotted in Figure E.2 with example maximum of 0.65, minimum of 0.25,
and various values for ε .

80

Figure E.2. Projection Operator with Offset Limits

E.2 C++ Implementation
f l o a t p r o j e c t i o n _ o p e r a t o r (f l o a t t h e t a , f l o a t y , f l o a t e p s i l o n ,
f l o a t the ta_max , f l o a t t h e t a _m in)
{

/ / C a l c u l a t e convex f u n c t i o n
f l o a t f _ t h e t a = (−4∗(t he t a_min − t h e t a) ∗ (the ta_max − t h e t a))
/ (e p s i l o n ∗ (the ta_max − t h e t a _m in) ^ 2) ;
f l o a t f _ t h e t a _ d o t = (4∗ (t h e t a _m in + the ta_max −(2∗ t h e t a)))
/ (e p s i l o n ∗ (the ta_max − t h e t a _m in) ^ 2) ;

f l o a t p r o j e c t i o n _ o u t = y ;

i f (f _ t h e t a <=0 && f _ t h e t a _ d o t ∗y < 0)
{

81

p r o j e c t i o n _ o u t = y ∗ (f _ t h e t a +1) ; / / y−(y∗− f _ t h e t a) ;
}

re turn p r o j e c t i o n _ o u t ;
}

82

APPENDIX F:
Matlab Code

F.1 Euler vs Trapezoidal Method
1 c l e a r , f o rma t long , c l c , c l o s e a l l
2 d t = 1 ;
3

4 t 0 = [0 : . 0 1 : 4] ;
5

6 y0 = exp (t 0) ;
7

8 %Eu l e r i n t e g r a t i o n
9

10 t 1 = [0 : 4] ;
11 y1 = exp (0) ;
12 f o r i =1:4
13 y1 (i +1)=y1 (i) + d t ∗exp (i −1) ;
14 end
15

16 %Tr a p e z o i d a l i n t e g r a t i o n
17 t 2 = [0 : 4] ;
18 y2 = exp (0) ;
19

20 f o r i =1:4
21 y2 (i +1)=y2 (i) + d t ∗exp (i −1) ;
22 y2 (i +1)=y2 (i) + (d t / 2) ∗ (exp (i −1)+y2 (i +1)) ;
23 end
24

25 p l o t (t0 , y0 , ’k−− ’ , t1 , y1 , ’ b ’ , t2 , y2 , ’ r ’)
26 l e g end (’ y=e ^ t ’ , ’ Eu l e r Method ’ , ’ T r a p e z o i d a l Method ’)

F.2 SISO Lyapunov Solution Proof
1 c l e a r , c l c , f o rma t compact , c l o s e a l l
2 %% Find Pb
3 wn = [5 : 0 . 1 : 1 0] ; %rad / s

83

4 f o r i =1 : l e n g t h (wn)
5 b = [wn(i)] ;
6 a = [1 ,wn(i)] ;
7 [A,B ,C ,D] = t f 2 s s (b , a)
8

9 Pb (i) = l y ap (A, 1) ;
10 end
11 Pb _ t e s t = 1 . / (2 ∗wn) ;
12

13 p l o t (wn , Pb_ t e s t , ’ o ’ ,wn , Pb)
14

15 %in t h i s s imp l e 1x1 ma t r i x c a s e Pb i s ea sy t o c a l c by hand i n code
16 % Pb ends up be ing : Pb=1/2∗wn ;

F.3 Reverse Linear Chirp
1 c l e a r , f o rma t compact , c l c , c l o s e a l l
2

3 f s = 1 / 2 0 0 ;
4 t = [0 : f s : 7] ;
5 f0= 0 . 0 1 ;%Hz
6 f1= 10 ; %Hz
7 k = (f1− f0) / (t (end)) ;
8

9 ph i_0 = 0 . 0 ;
10

11 s amp l e_de l ay = 0 . 0 2 ;
12

13 ou t = s i n (ph i_0 +2∗ p i ∗ (f0 ∗(7 −(t + s amp l e_de l ay)) +(k / 2) .∗ (7 − (t + s amp l e_de l ay)
) . ^ 2)) ;

14 %ou t = 1500 + ou t ∗10 ;
15

16 ou t = ou t ∗10 ;
17

18 p l o t (t , ou t)

F.4 Projection Operator Example Plots
1 c l e a r , c l c , f o rma t compact , c l o s e a l l

84

2

3 %% P l o t P r o j e c t i o n
4 e p s i l o n = [0 . 2 5 , 0 . 2 8 , 0 . 3 , 0 . 3 8] ;
5 t he t a_max = 0 . 6 5 ;
6 t h e t a _m in = 0 . 2 5 ;
7 c e n t e r = (the t a_max+ t h e t a _m in) / 2 ;
8

9 span = (the ta_max − t h e t a _m in) ∗ 1 . 4 ;
10 t h e t a = [c e n t e r −(span / 2) : 0 . 0 1 : c e n t e r +(span / 2)] ;
11

12 f o r j =1 : l e n g t h (e p s i l o n)
13 f o r i =1 : l e n g t h (t h e t a)
14 %f _ t h e t a (i , j) = −(t h e t a (i) .^2− t he t a_max ^2) / (e p s i l o n (j) ∗ t he t a_max

^2) ;
15 %f _ t h e t a _ d o t (i , j) = −(2∗ t h e t a (i)) / (e p s i l o n (j) ∗ t he t a_max ^2) ;
16 f _ t h e t a (i , j) = −(t h e t a_min − t h e t a (i)) ∗ (the ta_max − t h e t a (i)) . / (

e p s i l o n (j)) ;
17 f _ t h e t a _ d o t (i , j) = (t h e t a _m in + the ta_max −(2∗ t h e t a (i))) / (e p s i l o n (j

)) ;
18 end
19 end
20

21 f i g u r e
22 f o r j =1 : l e n g t h (e p s i l o n)
23 ho ld on
24 p l o t (t h e t a , f _ t h e t a (: , j))
25 end
26 l i n e ([min (t h e t a) ,max (t h e t a)] , [0 , 0] , ’ c o l o r ’ , ’ b l u e ’ , ’ l i n e s t y l e ’ , ’−− ’)
27 l i n e ([t he t a_min , t h e t a _m in] , [min (f _ t h e t a (: , 1)) ,max (f _ t h e t a (: , 1))] , ’ c o l o r ’

, ’ r ed ’ , ’ l i n e s t y l e ’ , ’−− ’)
28 l i n e ([the ta_max , the t a_max] , [min (f _ t h e t a (: , 1)) ,max (f _ t h e t a (: , 1))] , ’ c o l o r ’

, ’ r ed ’ , ’ l i n e s t y l e ’ , ’−− ’)
29 l e g end (’ \ e p s i l o n =0 .25 ’ , ’ \ e p s i l o n =0 .28 ’ , ’ \ e p s i l o n =0 .30 ’ , ’ \ e p s i l o n =0 .38 ’)
30 y l a b e l (’ f (\ t h e t a) ’)
31 x l a b e l (’ \ t h e t a ’)
32 t i t l e (’ P r o j e c t i o n Ope r a t o r ’)
33 ho ld o f f

F.5 System Identification
85

1 c l e a r , c l c , f o rma t compact , c l o s e a l l
2

3 % Impor t d a t a f i l e f o r a n a l y s i s
4 [f i l ename , pathname] = u i g e t f i l e (’ ∗ .m’ , ’ Choose f i r s t MATLAB f i l e ’) ;
5 run (f i l e n ame)
6 %%
7 % Clean t i g g e r PWMs
8 f o r r =1 : l e n g t h (RCIN . d a t a (: , 9))
9 i f RCIN . d a t a (r , 8) < 1700 %channe l 6

10 RCIN . d a t a (r , 8) = 1000 ;
11 end
12 i f RCIN . d a t a (r , 9) < 1700 %channe l 7
13 RCIN . d a t a (r , 9) = 1000 ;
14 end
15 end
16

17 %Tr i g g e r Channel Data
18 r o l l _ t r i g g e r _ d a t a = RCIN . d a t a (: , 9) ;
19 p i t c h _ t r i g g e r _ d a t a = RCIN . d a t a (: , 8) ;
20 t r i g g e r _ d a t a _ t i m e = RCIN . d a t a (: , 2) ;
21 %Command Data
22 ro l l _command_da ta = ((RCOU. d a t a (: , 3) −1500) +(RCOU. d a t a (: , 4) −1500)) +1526;
23 pi tch_command_da ta = ((RCOU. d a t a (: , 3) −1500) −(RCOU. d a t a (: , 4) −1500)) +1460;
24 command_data_t ime = RCOU. d a t a (: , 2) ;
25 %IMU Data
26 p = IMU2 . d a t a (: , 3) ;
27 q = −IMU2 . d a t a (: , 4) ;
28 IMU_time = IMU2 . d a t a (: , 2) ;
29

30 % P l o t t o show s e c t i o n e d d a t a
31 p l o t (RCIN . d a t a (: , 2) ∗10^−6 ,RCIN . d a t a (: , 8) −1500 ,IMU2 . d a t a (: , 2) ∗10^−6 , p

∗ (1 80 / p i) , . . .
32 RCIN . d a t a (: , 2) ∗10^−6 ,RCIN . d a t a (: , 9) −1500 ,IMU2 . d a t a (: , 2) ∗10^−6 , q

∗ (1 80 / p i))
33 l e g end (’ ch6 ’ , ’ p ’ , ’ ch7 ’ , ’ q ’)
34 x l a b e l (’ t ime (s e conds) ’)
35 y l a b e l (’pwm coun t s ’)
36

37 [s t a r t _ i n d e x , s t o p _ i n d e x] = f i n d _ t r i g g e r (r o l l _ t r i g g e r _ d a t a , 1700) ;
38 f p r i n t f (’Which t e s t would you l i k e t o a n a l y z e ? [P i ck a number between 1

86

and %i] \ n ’ , l e n g t h (s t a r t _ i n d e x)) ;
39 n um_o f _ t e s t _ d e s i r e d = i n p u t (’ ’) ;
40

41 %[inpu t , ou t pu t , t ime] = s e c t i o n _ t r i g g e r e d _ d a t a (i n p u t _ d a t a ,
i n p u t _ d a t a _ t ime , o u t p u t _ d a t a , o u t p u t _ d a t a _ t ime , t r i g g e r _ d a t a ,
t r i g g e r _ t im e , n um_o f _ t e s t _ d e s i r e d)

42 [i npu t , ou t pu t , t ime] = s e c t i o n _ t r i g g e r e d _ d a t a (ro l l_command_da ta ,
command_data_time , p , IMU_time , r o l l _ t r i g g e r _ d a t a , t r i g g e r _ d a t a _ t im e
, n um_o f _ t e s t _ d e s i r e d) ;

43

44 %Cen t e r c o n t r o l s f o r SysID and p l o t t i n g
45 i n p u t = i npu t −1500; %c e n t e r s t i c k oupu t s 1500
46

47 % Th e o r e t i c a l Ch i rp
48 f s = 1 / 5 0 ;
49 t = [0 : f s : 7] ;
50 f0= 0 . 0 1 ;%Hz
51 f1= 10 ; %Hz
52 k = (f1− f0) / (t (end)) ;
53 ph i_0 = 0 ;
54

55 i n p u t _ t h e o r e t i c a l = s i n (ph i_0 +2∗ p i ∗ (f0 ∗(7− t) +(k / 2) .∗ (7 − t) . ^ 2)) ;
56 i n p u t _ t h e o r e t i c a l = i n p u t _ t h e o r e t i c a l ∗75 ;
57

58 f i g u r e
59 p l o t (t ime , i npu t , ’ o ’ , t ime , o u t p u t ∗ (1 80 / p i) , t , i n p u t _ t h e o r e t i c a l)
60 l e g end (’ r o l l cmd ’ , ’ r o l l r a t e ’)
61

62 %% System I d e n t i f i c a t i o n
63 l o o p _ r a t e = mean (d i f f (IMU_time)) ∗10^−6;
64 t im e_ c l e a n = [0 : l o o p _ r a t e : (l e n g t h (t ime) −1)∗ l o o p _ r a t e] ’ ;
65 o u t p u t _ c l e a n = i n t e r p 1 (t ime , ou t pu t , t ime_c l e an , ’ pch ip ’) ;
66 %i n p u t _ c l e a n = i n t e r p 1 (t ime , i npu t , t ime_c l e an , ’ pchip ’) ;
67 i n p u t _ c l e a n = i n t e r p 1 (t , i n p u t _ t h e o r e t i c a l , t ime_c l e an , ’ p ch ip ’) ;
68

69

70 f i g u r e
71 p l o t (t ime , i n p u t _ c l e a n , t ime , o u t p u t _ c l e a n ∗ (1 80 / p i))
72 l e g end (’ r o l l cmd ’ , ’ r o l l r a t e ’)
73

87

74 [y , t , x] = e s t ima t e _mode l (i n p u t _ c l e a n , o u t p u t _ c l e a n , t ime_ c l e a n) ;
75

76 f i g u r e
77 s u b p l o t (2 , 1 , 1)
78 p l o t (t ime_c l e an , i n p u t _ c l e a n)
79 l e g end (’command ’)
80 x l a b e l (’ t ime (s e conds) ’)
81 y l a b e l (’ \ d e l t a (pwm) ’)
82 t i t l e (’ Ro l l An a l y s i s ’)
83 s u b p l o t (2 , 1 , 2)
84 p l o t (t , y , t ime_c l e an , o u t p u t _ c l e a n)
85 l e g end (’model ’ , ’ measured r e s p on s e ’)
86 x l a b e l (’ Time (s) ’)
87 y l a b e l (’ Ro l l r a t e (r ad / s) ’)

88

APPENDIX G:
L1 Adaptive Controller Source Code

G.1 L1 Adaptive Control Source Code
1 /∗
2 Thi s program i s f r e e s o f tw a r e : you can r e d i s t r i b u t e i t and / o r modify
3 i t unde r t h e t e rms of t h e GNU Gene r a l P u b l i c L i c en s e as p u b l i s h e d by
4 t h e F ree So f twa r e Founda t ion , e i t h e r v e r s i o n 3 of t h e L icense , o r
5 (a t your o p t i o n) any l a t e r v e r s i o n .
6 Thi s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
7 bu t WITHOUT ANY WARRANTY; w i t h ou t even t h e imp l i e d wa r r a n t y o f
8 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See t h e
9 GNU Gene r a l P u b l i c L i c en s e f o r more d e t a i l s .

10 You shou ld have r e c e i v e d a copy of t h e GNU Gene r a l P u b l i c L i c en s e
11 a long wi th t h i s program . I f not , s e e < h t t p : / /www. gnu . o rg / l i c e n s e s / > .
12 ∗ /
13 /∗
14 Adap t i ve c o n t r o l l e r by Ryan Be a l l
15 See
16 h t t p : / / n a i r a −hovakimyan . mechse . i l l i n o i s . edu / l1 −ad ap t i v e − c o n t r o l −

t u t o r i a l s /
17 f o r ma t h ema t i c a l b a s i s
18 ∗ /
19

20 # i n c l u d e <AP_HAL/AP_HAL . h>
21 # i n c l u d e <GCS_MAVLink /GCS . h>
22 # i n c l u d e "ADAP_Control . h "
23 # i n c l u d e < s t d i o . h>
24

25 e x t e r n c o n s t AP_HAL : :HAL& ha l ;
26

27 c o n s t AP_Param : : GroupInfo ADAP_Control : : v a r _ i n f o [] = {
28 / / a d a p t i v e c o n t r o l p a r ame t e r s
29 AP_GROUPINFO_FLAGS("CH" , 1 , ADAP_Control , enab l e_chan , 0 ,

AP_PARAM_FLAG_ENABLE) ,
30 AP_GROUPINFO("AL" , 2 , ADAP_Control , a lpha , 24) ,

89

31 AP_GROUPINFO("GAMT" , 3 , ADAP_Control , gamma_theta , 1000) ,
32 AP_GROUPINFO("GAMW" , 4 , ADAP_Control , gamma_omega , 1000) ,
33 AP_GROUPINFO("GAMS" , 5 , ADAP_Control , gamma_sigma , 1000) ,
34 AP_GROUPINFO("THU" , 6 , ADAP_Control , the ta_max , 2 . 0) ,
35 AP_GROUPINFO("THL" , 7 , ADAP_Control , t h e t a_min , 0 . 5) ,
36 AP_GROUPINFO("THE" , 8 , ADAP_Control , t h e t a _ e p s i l o n , 5925) ,
37 AP_GROUPINFO("OMU" , 9 , ADAP_Control , omega_max , 2 . 0) ,
38 AP_GROUPINFO("OML" , 10 , ADAP_Control , omega_min , 0 . 5) ,
39 AP_GROUPINFO("OME" , 11 , ADAP_Control , omega_eps i lon , 5925) ,
40 AP_GROUPINFO("SIGU" , 12 , ADAP_Control , sigma_max , 0 . 1) ,
41 AP_GROUPINFO("SIGL" , 13 , ADAP_Control , sigma_min , −0.1) ,
42 AP_GROUPINFO("SIGE" , 14 , ADAP_Control , s i gma_ep s i l on , 203) ,
43 AP_GROUPINFO("W0" , 15 , ADAP_Control , w0 , 25) ,
44 AP_GROUPINFO("K" , 16 , ADAP_Control , k , 0 . 4 5) ,
45 AP_GROUPINFO("KG" , 17 , ADAP_Control , kg , 1 . 0) ,
46

47 AP_GROUPEND
48 } ;
49

50 /∗
51 r e t u r n t r u e when enab l ed
52 ∗ /
53 boo l ADAP_Control : : e n ab l e d (vo id) c o n s t
54 {
55 / / Enab l e s Adap t i ve C o n t r o l l e r i n s t e a d o f PID i f r c PWM va l u e i s

above 1700 m i l l i s e conds
56 r e t u r n (enab l e_chan > 0 && ha l . r c i n −> r e ad (enab l e_chan −1) >= 1700) ;
57 }
58

59

60 /∗
61 r e s e t t o s t a r t u p v a l u e s
62 ∗ /
63 vo id ADAP_Control : : r e s e t (u i n t 1 6 _ t l o o p _ r a t e _ h z)
64 {
65 x_m = x ;
66 u = 0 . 0 ;
67 u_ lowpass = 0 . 0 ;
68 u_sp = 0 . 0 ;
69 t h e t a = 1 . 0 ;

90

70 omega = 1 . 0 ;
71 s igma = 0 . 0 ;
72 i n t e g r a t o r = 0 . 0 ;
73

74 f l o a t u _ c u t o f f _ h z = w0 / (2∗M_PI) ; / / c o n v e r t c u t o f f f r e q from rad / s t o
hz

75 u _ f i l t e r . s e t _ c u t o f f _ f r e q u e n c y (l o op_ r a t e _h z , u _ c u t o f f _ h z) ;
76 u _ f i l t e r . r e s e t () ;
77

78 f l o a t r _ c u t o f f _ h z = (a lpha −2) / (2 ∗M_PI) ; / / c o n v e r t c u t o f f f r e q from
rad / s t o hz

79 r _ f i l t e r . s e t _ c u t o f f _ f r e q u e n c y (l o op_ r a t e _h z , r _ c u t o f f _ h z) ;
80 r _ f i l t e r . r e s e t () ;
81 }
82

83

84 /∗
85 t r a p e z o i d a l i n t e g r a t i o n h e l p e r f u n c t i o n
86 ∗ /
87 f l o a t ADAP_Control : : t r a p e z o i d a l _ i n t e g r a t i o n (f l o a t y0 , f l o a t y1_dot ,

f l o a t d t , f l o a t &y0_dot)
88 {
89 f l o a t y1 = y0 + (d t / 2) ∗ (y0_do t+y1_do t) ;
90 y0_do t = y1_do t ;
91

92 r e t u r n y1 ;
93 }
94

95 /∗
96 a d a p t i v e c o n t r o l upda t e . Given a t a r g e t r a t e i n r a d i a n s / second and a
97 c u r r e n t s e n s o r r a t e on t h e same a x i s i n r a d i a n s / second , r e t u r n an
98 a c t u a t o r v a l u e from −1 t o 1
99 ∗ /

100 f l o a t ADAP_Control : : upda t e (u i n t 1 6 _ t l o op_ r a t e _h z , f l o a t t a r g e t _ r a t e ,
f l o a t s e n s o r _ r a t e , f l o a t s c a l e r , f l o a t a speed)

101 {
102 f l o a t d t ;
103 c o n s t f l o a t u _ l im i t = r a d i a n s (4 5) ;
104

105 x = s e n s o r _ r a t e ;

91

106 r = t a r g e t _ r a t e ;
107 r = r _ f i l t e r . app ly (r) ;
108

109 / / r e s e t r e f e r e n c e model a t i n i t i a l i z a t i o n
110 u i n t 6 4 _ t now = AP_HAL : : mic ros64 () ;
111 i f (l a s t _ r u n _ u s == 0 | | now − l a s t _ r u n _ u s > 200000UL) {
112 r e s e t (l o o p _ r a t e _ h z) ;
113 l a s t _ r u n _ u s = now ;
114 r e t u r n 0 ;
115 }
116

117 d t = (now − l a s t _ r u n _ u s) ∗ 1 . 0 e −6;
118 l a s t _ r u n _ u s = now ;
119

120

121 / / u (c o n t r o l l e r o u t p u t t o p l a n t)
122 e t a = t h e t a ∗x + omega∗ u_ lowpass + sigma ;
123 u_sp = e t a ; / / u t o s t a t e p r e d i c t o r
124

125 u = c o n s t r a i n _ f l o a t (e t a −(kg∗ r) ,− r a d i a n s (9 0) / d t , r a d i a n s (9 0) / d t) ;
126

127 / / Check C o n t r o l l e r S a t u r a t i o n from p r e v i o u s t ime s t e p
128 boo l s a t u r a t e d = ((u < 0 && u_lowpass >= 0 .99∗ u _ l im i t) | |
129 (u > 0 && u_lowpass <= −0.99∗ u _ l im i t)) ;
130

131 / / kD(s) (c a s c aded second o r d e r low pa s s + s imp l e i n t e g r a t o r)
132 u_ lowpass = u _ f i l t e r . app ly (u) ;
133

134 i f (! s a t u r a t e d) {
135 i n t e g r a t o r = t r a p e z o i d a l _ i n t e g r a t i o n (i n t e g r a t o r , u_lowpass , d t ,

ou t1) ;
136 u_ lowpass = c o n s t r a i n _ f l o a t (−k∗ i n t e g r a t o r ,− u_ l im i t , u _ l im i t) ;
137 }
138

139 / / S t a t e P r e d i c t o r (f i r s t o r d e r s i n g l e po l e r e c u r s i v e f i l t e r)
140 / / Re f e r en c e / Companion Model
141 f l o a t a l p h a _ f i l t = exp (− a l ph a ∗ d t) ; / / a l p h a i n r ad / s
142 a l p h a _ f i l t = c o n s t r a i n _ f l o a t (a l p h a _ f i l t , 0 . 0 , 1 . 0) ;
143 f l o a t b e t a _ f i l t = 1− a l p h a _ f i l t ;
144

92

145 x_m = a l p h a _ f i l t ∗x_m + b e t a _ f i l t ∗ (u_sp) ;
146

147 x _ e r r o r = x_m − x ;
148

149

150 / / C o n s t r a i n e r r o r t o +−300 deg / s
151 x _ e r r o r = c o n s t r a i n _ f l o a t (x _ e r r o r ,− r a d i a n s (300) , r a d i a n s (300)) ;
152

153 / / C a l c u l a t e s o l u t i o n t o Lyapunov 1x1 ma t r i x
154 f l o a t Pb = 1 / (2∗ a l ph a) ;
155

156 / / P r o j e c t i o n Ope r a t o r
157 t h e t a _ d o t = p r o j e c t i o n _ o p e r a t o r (t h e t a ,− gamma_theta∗ x _ e r r o r ∗Pb∗x ,

t h e t a _ e p s i l o n , the ta_max , t h e t a _m in) ;
158 omega_dot = p r o j e c t i o n _ o p e r a t o r (omega ,−gamma_omega∗ x _ e r r o r ∗Pb∗

u_lowpass , omega_eps i lon , omega_max , omega_min) ;
159 s igma_do t = p r o j e c t i o n _ o p e r a t o r (sigma ,−gamma_sigma∗ x _ e r r o r ∗Pb ,

s i gma_ep s i l on , sigma_max , sigma_min) ;
160

161 / / P a r ame t e r Update u s i n g T r a p e z o i d a l i n t e g r a t i o n
162 i f (! s a t u r a t e d) {
163 t h e t a = t r a p e z o i d a l _ i n t e g r a t i o n (t h e t a , t h e t a _ d o t , d t , t h e t a 1) ;
164 omega = t r a p e z o i d a l _ i n t e g r a t i o n (omega , omega_dot , d t , omega1) ;
165 s igma = t r a p e z o i d a l _ i n t e g r a t i o n (sigma , s igma_dot , d t , s igma1) ;
166 }
167

168 t h e t a = c o n s t r a i n _ f l o a t (t h e t a , t h e t a_min , t he t a_max) ;
169 omega = c o n s t r a i n _ f l o a t (omega , omega_min , omega_max) ;
170 s igma = c o n s t r a i n _ f l o a t (sigma , sigma_min , sigma_max) ;
171

172 / / Log Data t o f l a s h
173 Da t aF l a s h_C l a s s : : i n s t a n c e ()−>Log_Write (log_msg_name , "TimeUS , Dt ,

Athe ta , Aomega , Asigma , Aeta ,Axm,Ax , Ar , Axerr , AuL" , " Q f f f f f f f f f f " ,
174 now ,
175 dt ,
176 t h e t a ,
177 omega ,
178 sigma ,
179 e t a ,
180 d eg r e e s (x_m) ,

93

181 d eg r e e s (x) ,
182 d eg r e e s (r) ,
183 d eg r e e s (x _ e r r o r) ,
184 d eg r e e s (u_ lowpass)) ;
185

186

187 r e t u r n c o n s t r a i n _ f l o a t (u_ lowpass / u _ l im i t , −1 , 1) ;
188 }
189

190 f l o a t ADAP_Control : : p r o j e c t i o n _ o p e r a t o r (f l o a t Theta , f l o a t y , f l o a t
e p s i l o n , f l o a t th_max , f l o a t th_min) c o n s t

191 {
192

193 / / C a l c u l a t e convex f u n c t i o n
194 / / Nominal un− s a t u r a t e d v a l u e i s above z e r o l i n e on a p a r a b o l i c

cu rve
195 / / S t e e p n e s s o f cu rve i s s e t by e p s i l o n
196 f l o a t f _ d i f f 2 = (th_max− th_min) ∗ (th_max− th_min) ;
197 f l o a t f _ t h e t a = (−4∗(th_min − The ta) ∗ (th_max − The ta)) / (

e p s i l o n ∗ f _ d i f f 2) ;
198 f l o a t f _ t h e t a _ d o t = (4∗ (th_min + th_max − (2∗ The ta))) / (e p s i l o n ∗

f _ d i f f 2) ;
199

200 f l o a t p r o j e c t i o n _ o u t = y ;
201

202 i f (f _ t h e t a <= 0 && f _ t h e t a _ d o t ∗y < 0)
203 {
204 p r o j e c t i o n _ o u t = y ∗ (f _ t h e t a +1) ; / / y−(y∗(−1∗ f _ t h e t a)) ;
205 }
206

207 r e t u r n p r o j e c t i o n _ o u t ;
208 }
209

210 /∗
211 send ADAP_TUNING message
212 ∗ /
213 vo id ADAP_Control : : a d a p t i v e _ t u n i n g _ s e n d (mav l i n k_ ch ann e l _ t chan , u i n t 8 _ t

a x i s)
214 {
215 i f (! e n ab l e d () | | !HAVE_PAYLOAD_SPACE(chan , ADAP_TUNING)) {

94

216 r e t u r n ;
217 }
218 mavl ink_msg_adap_ tun ing_send (chan , ax i s ,
219 r ,
220 x ,
221 x_e r r o r ,
222 t h e t a ,
223 omega ,
224 sigma ,
225 t h e t a _ d o t ,
226 omega_dot ,
227 s igma_dot ,
228 x_m ,
229 u_lowpass ,
230 u) ;

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

List of References

[1] DoD (Department of Defense), “The role of autonomy in dod systems,” Defense
Science Board, Washington, D.C. 20301-3140, Tech. Rep., July 2012.

[2] N. Minorsky, “Directional stability of automatically steered bodies,” Journal of the
American Society for Naval Engineers, vol. 34, no. 2, 1922.

[3] D. R. Jenkins. (2000). Hypersonics before the shuttle: A concise history of the X-15
research airplane. NASA. [Online]. Available: https://spaceflight.nasa.gov/outreach/
SignificantIncidents/assets/hypersonics-before-the-shuttle.pdf

[4] NASA Armstrong Fact Sheet: X-15 Hypersonic Research Program. (2015, Aug.
13). NASA. [Online]. Available: https://www.nasa.gov/centers/armstrong/news/
FactSheets/FS-052-DFRC.html

[5] Z. T. Dydek, A. M. Annaswamy, and E. Lavretsky, “Adaptive control and the NASA
X-15-3 flight revisited,” IEEE Control Systems, vol. 30, no. 3, pp. 32–48, 2010.

[6] B. Peterson and K. Narendra, “Bounded error adaptive control,” IEEE Transactions
on Automatic Control, vol. 27, no. 6, pp. 1161–1168, dec 1982.

[7] E. Lavretsky and K. A. Wise, Robust Adaptive Control, M. J. Grimble and M. A.
Johnson, Eds. New York, Dordrecht, Heidelberg, London: Springer, 2013.

[8] K. J. Åström and B. Wittenmark, Adaptive control, 2nd ed. Mineola, New York:
Dover Publications, INC., 1995.

[9] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory: Guaranteed Robustness
with Fast Adaptation. Philadelphia: Society for Industrial and Applied Mathematics,
2010.

[10] Anderson, B. et al., “Failures of adaptive control theory and their resolution,” Com-
munications in Information & Systems, vol. 5, no. 1, pp. 1–20, 2005.

[11] ArduPlane, ArduCopter, ArduRover Source. (2017). ArduPilot Development Team.
[Online]. Available: https://github.com/ArduPilot/ardupilot

[12] ArduPilot Autopilot Suite. (2016). ArduPilot Development Team. [Online]. Avail-
able: http://ardupilot.org/ardupilot/

[13] A. Tridgell. (2017). MAVLink proxy and command line ground station. ArduPilot
Development Team. [Online]. Available: https://github.com/ArduPilot/MAVProxy

97

https://spaceflight.nasa.gov/outreach/SignificantIncidents/assets/hypersonics-before-the-shuttle.pdf
https://spaceflight.nasa.gov/outreach/SignificantIncidents/assets/hypersonics-before-the-shuttle.pdf
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-052-DFRC.html
https://github.com/ArduPilot/ardupilot
http://ardupilot.org/ardupilot/
https://github.com/ArduPilot/MAVProxy

[14] L. Meier. (2014). Marshalling / communication library for drones. PX4 Develop-
ment Team. [Online]. Available: https://github.com/mavlink/mavlink/

[15] A. Tridgell. (2017). MAVProxy. ArduPilot Development Team. [Online]. Available:
http://ardupilot.github.io/MAVProxy/html/index.html

[16] Articles. (2017). FliteTest. [Online]. Available: https://www.flitetest.com/articles

[17] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and practice.
Princeton, New Jersey: Princeton university press, 2012.

[18] Transfer function estimation. (2017, May). The Mathworks, Inc. [Online]. Available:
https://www.mathworks.com/help/ident/ref/tfest.html

[19] A. M. Lyapunov, “The general problem of motion stability,” Annals of Mathematics
Studies, vol. 17, 1892.

[20] H. K. Khalil, Noninear Systems. Upper Saddle River, New Jersey 07458: Prentice
Hall, 2002.

98

https://github.com/mavlink/mavlink/
http://ardupilot.github.io/MAVProxy/html/index.html
https://www.flitetest.com/articles
https://www.mathworks.com/help/ident/ref/tfest.html

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

99

	Introduction
	DOD / NAVY Autonomous Roadmap
	Challenges in Designing Versatile Controllers
	Problem Formulation and Thesis Organization

	Overview of Modern Control Techniques
	Adaptive Control History
	Classical Feedback vs Adaptive Control
	Model Reference Adaptive Control

	Engineering of Adaptive Control
	L1 Adaptive Control
	L1 Parameter Estimation
	L1 Filter - C(s)
	L1 Discrete Time Implementation

	Design of Experimental Platform
	Pixhawk Autopilot
	Ground Control Station
	Simulation
	Airframe

	Flight Testing and Performance Evaluation
	Simulation Results
	Flight Test Results

	Recommendation
	L1 Adaptive Control Algorithm Tuning
	Improved Recursive Architecture
	Integrator Windup Issue

	Conclusion
	Transfer Functions
	Transfer Functions

	Fixed Wing Aircraft Dynamics Model
	Fixed Wing Aircraft Dynamics Model

	System Identification
	System Identification

	Lyapunov Stability Definition
	Lyapunov Stability Theory

	Projection Operator
	 Derivation of Projection Operator Proj(,y)
	C++ Implementation

	Matlab Code
	Euler vs Trapezoidal Method
	SISO Lyapunov Solution Proof
	Reverse Linear Chirp
	Projection Operator Example Plots
	System Identification

	L1 Adaptive Controller Source Code
	L1 Adaptive Control Source Code

	List of References
	Initial Distribution List

